Processing math: 100%

Thứ Hai, 2 tháng 5, 2016

Hai bài số học của Mỹ và Trung Quốc.

1/ (Mỹ) Chứng minh rằng với mỗi số nguyên n \ge 2 đều tồn tại một tập S gồm n số nguyên thoả mãn (a-b)^2 là ước của ab với mọi a,b thuộc S phân biệt.
2/ ( Trung Quốc) Tìm số nguyên không âm K nhỏ nhất sao cho với mọi tập con K- phần tử của tập hợp {1,2,..50} tồn tại hai phần tử a,b phân biệt mà a+b là ước của ab

Giải

1/ Ta chứng minh bằng quy nạp rằng với mỗi số nguyên dương n đều tồn tại một tập hợp S_n gồm n phần tử thoả mãn điều kiện đã cho.

Với n=2 chọn S_2={0,1}. Giả sử khẳng định đã đúng đến n. Ta chứng minh khẳng định đúng với n+1. Gọi L là BCNN của các số khác 0 có dạng (a-b)^2 và ab trong đó a,b \in S_n. Đặt:

S_{n+1}={s+L: s \in S_n} \cup {0}

Khi đó, vì L \ge 0 nên S_{n+1} chứ n+1 phần tử phân biệt không âm. Ta chứng minh tập S_{n+1} thoả mãn.

Lấy u,v, bất kì. Nếu trong u,v có một số bằng 0 thì hiển nhiên. Nếu u,v đều khác 0 thì tồn tại hai phần tử a,b thuộc S sao cho
u=L+a, v=L+b.

Từ các chọn ta có uv \vdots (u-v)^2. Vậy ta đã chứng minh với n+1. Theo nguyên lí quy nạp ta có đpcm
2/ Giá trị nhỏ nhất của k=39. Cho a,b thuộc S thoả mãn a+b chia hết ab. Đặt c=(a,b), a=ca_1, b=cb_1 thì (a_1,b_1)=1 Khi đó c(a_1+b_1) chia hết c^2a_1b_1 Suy ra a_1+b_1 chia hết ca_1b_1. Vì a_1, b_1 không có ước chung nên a_1+b_1 không chia hết a_1b_1. nên c chia hết cho a_1+b_1.(1)

Vì S là tập con {1,..,50}, ta có a+b \le 99, vì thế c(a_1+b_1) \le 99, từ (1) suy ra a_1+b_1 \le 9 mặt khác, a_1+b_1 \ge 3 từ đây ta tìm được các cặp (a,b):



(6, 3); (12, 6); (18, 9); (24, 12); (30, 15); (36, 18); (42, 21); (48, 24);

(12, 4); (24, 8); (36, 12); (48, 16)

(20, 5), (40, 10), (15, 10), (30, 20), (45, 30)

(30, 6)

(42, 7), (35, 14), (28, 21)

(40, 24)

(45, 36)


Có 23 cặp, 24 số. Còn lại 26 số. Suy ra K>26. Ta cần tìm giá trị nhỏ nhất của K-26 sao cho ta sẽ chọn được hai số trong 24 số thuộc 1 cặp. Ta tìm được giá trị 13 là nhỏ nhất .Thật vậy, giả sử nhỏ hơn 12 thì ta chọn 26 số đó với các số sau đây 3,4,5,7,8,9,10,14,16,28,30,36.


Vậy K nhỏ nhất là 39.

Không có nhận xét nào:

Đăng nhận xét

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...