Processing math: 0%

Thứ Hai, 11 tháng 7, 2016

Bài toán mở rộng về đường tròn chín điểm ( Tiếng Anh)

Let ABC be a triangle with circumcircle (O). (K) is a circle passing through B,C. (K) cuts CA,AB again at E,F. BE cuts CF at H_K.

a) Prove that H_KK and AO intersect on (O).

b) O_K is isogonal conjugate of H_K with respect to triangle ABC. Prove that O_K lies on OK.

c) Let L,N be the points on CA,AB, resp such that O_KL\parallel BE, O_KN\parallel CF. Prove that LN\parallel BC.

d) The line passing through N parallel to BE cuts the line passing through L parallel to CF at P. Prove that P lies on AH_K.

e) Q,R lie on BE,CF, resp such that PQ\parallel AB,PR\parallel AC. Prove that QR\parallel BC.

f) Prove that NQ,LR and AH_K are concurrent.

g) D is projection of K on AH_K. Prove that DK,EF,BC are concurrent.

h) Prove that KN\perp BE, KL\perp CF.

i) Prove that nine points D,E,F;P,Q,R;K,L,N lie on a circle (N_K).

j) Prove that N_K is midpoint of PK and KN_K is parallel to AO.

k) Prove that H_K,N_K,O are collinear.

When K \equiv M midpoint of BC, we get all properities of Nine-point circle.

Solution:

a, g) Let S \equiv EF \cap BC. Then AS is the polar of H_K WRT (K) and AH_K is the polar of S WRT (K) \Longrightarrow KH_K is perpendicular to AS through H and AH_K is perpendicular to KS through D. Hence SH \cdot SA=SD \cdot SK=SB \cdot SC \Longrightarrow H \in (O). Since \angle AHH_K=90^{\circ}, then KH_K and AO meet on (O).

b, c) \angle O_KBC=\angle H_KBF=\angle H_KCE=\angle O_KCB \Longrightarrow O_K is on perpendicular bisector OK of \overline{BC}. \angle BFC=\angle BNO_K=\angle BKO_K (mod 180) \Longrightarrow N,B,K,O_K are concyclic \Longrightarrow \angle BNK=\angle BO_KK. But \angle BO_KK=90^{\circ}-\angle FBE=\angle FEK \Longrightarrow \angle BNK=\angle FEK, i.e. N lies on circumcircle (N_K) of DKEF. Similarly, L \in (N_K). Thus, LN is antiparallel to EF WRT AE,AF \Longrightarrow LN \parallel BC.

d, f)\triangle PLN and \triangle H_KCB, with parallel sides, are homothetic with center A \Longrightarrow A,P,H_K are collinear. Likewise, \triangle ANL and \triangle PQR, with parallel sides, are homothetic with center AP \cap NQ \cap LR, i.e. AH_K,NQ,LR concur.

i) \angle NKL=\angle NBO_K+\angle LCO_K=CBH_K+\angle BCH_K=\angle NPL (mod 180) \Longrightarrow P \in (N_K). Further, P is the midpoint of the arc EF of (N_K), because \angle PFK=\angle PDK=90^{\circ}, i.e. KP is perpendicular bisector of  \overline{EF}. Now, since \angle PQE=\angle FBE=\angle PKE, it follows that Q \in (N_K). Similarly, R \in (N_K).

h, j) D,E,F,P,Q,R,K,L,N lie then on a circle (N_K) with diameter KP perpendicular to EF, i.e. KP \parallel AO. Thus, KN is perpendicular to PN \parallel BE and KL is perpendicular to PL \parallel CF.

e, k) \triangle PQR \cup (N_K) and  \triangle ABC \cup (O) are homothetic with center H_K \equiv AP \cap BQ \cap CR, thus QR \parallel BC and H_K,O,N_K are collinear.

Không có nhận xét nào:

Đăng nhận xét

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...