Đề:
Cho a, b, c là các số thực không âm đôi một khác nhau
Tìm giá trị nhỏ nhất của biểu thức P=\left [ (a+b)^{2}+(b+c)^{2}+(c+a)^{2} \right ]\left [ \frac{1}{(a-b)^{2}}+\frac{1}{(b-c)^{2}}+\frac{1}{(c-a)^{2}} \right ]
Lời giải:
Giả sử a > b > c \ge 0
Khi đó P= \Big[(a+b)^2+(b+c)^2+(c+a)^2 \Big].\left[ \frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(a-c)^2}\right]
\ge \left[ (a+b)^2 +a^2+b^2\right] .\left[ \frac{1}{(a-b)^2}+\frac{1}{a^2}+\frac{1}{b^2}\right]
=2\left[(a+b)^2-ab \right].\left[ \frac{1}{(a+b)^2-4ab}+\frac{(a+b)^2}{a^2b^2}-\frac{2}{ab}\right]
BDT đã cho có dạng thuần nhất nên chuẩn hóa a+b=1, đặt ab=x,0< x \le \frac 14
Khi đó \frac F2 \ge(1-x)\left( \frac{1}{1-4x}+\frac{1}{x^2}-\frac 2x\right)
=3+\frac{1}{x^2}-\frac{3}{x}+\frac{3x}{1-4x}
Khảo sát hàm số f(x)=\frac{1}{x^2}-\frac{3}{x}+\frac{3x}{1-4x} trên \left[0;\frac 14 \right)
Ta thu được \min f(x)=\frac{35+11\sqrt{33}}{8}
Từ đó suy ra F \ge \frac{59+11\sqrt{33}}{4}
\min F=\frac{59+11\sqrt{33}}{4} đạt được chẳng hạn khi a,b là 2 nghiệm của pt x^2-x+\frac{13-\sqrt{33}}{34},c=0
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Đăng ký:
Đăng Nhận xét (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho x^2 \equiv a (mod n) Ta cũng có th...
Không có nhận xét nào:
Đăng nhận xét