Processing math: 0%

Thứ Ba, 30 tháng 8, 2016

Bài toán đường thẳng qua tâm và đề thi PTNK

(PTNK 2014 -2015) Cho \triangle ABC không cân.Gọi I là trung điểm BC.Đường tròn (I,IA) cắt AB,AC lần lượt tại M,N.MI,NI lần lượt cắt (I) tại P,Q.Gọi K là giao của PQ với tiếp tuyến tại A của (I).Chứng minh K nằm trên BC.

Lời giải:

Ta dễ thấy ngay KA là trục đẳng phương của (I) và đường tròn đường kính AI.Từ đó ý tưởng phương tích-trục đẳng phương là sáng sủa nhất.

[IMG]
[/IMG]

Kẻ đường kính AA' của (I).Khi đó các tứ giác:AMA'P,ANA'QABA'C là hình bình hành nên A',C,PA',B,Q thẳng hàng.
Từ đó \angle AQB=\angle APC=90.
Kẻ đường cao AH thì H \in (ABQ),(ACP)
Từ đó: \angle QHB=\angle QAB=\angle QPM
Suy ra QHIP là tứ giác nội tiếp.
Do đó HI là trục đẳng phương của đường tròn đường kính AM(QHIP).
Và thêm nữa là PQ là trục đẳng phương của (I)(QHIP).
Từ đó thì AK,PQ,HI đồng qui nên ta có đpcm.

Để ý thì ta sẽ thấy tam giác AMN có BC là đường thẳng qua tâm, có thể dùng Pascal để chứng minh QB, CP cắt nhau tại A' thuộc (I) nhưng chưa chỉ ra được AA' là đường kính có thể chỉ ra bằng cách do QB // CN. Như vậy bài toán là cách dựng tam giác ABC nội tiếp (O) và đường thẳng sao cho d đi 
qua tâm và cắt AB, AC tại E, F sao cho O là trung điểm EF.

Không có nhận xét nào:

Đăng nhận xét

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...