Định lý Hansen được phát biểu như sau (tham khảo trong Một số kiến thức về hình học phẳng trong các cuộc thi OLYMPIC Toán):
Cho tam giác ABC có r là bán kính đường tròn nội tiếp, r_a, r_b, r_c là các bán kính đường tròn bàng tiếp. Khi đó các khẳng định sau là tương đương:
1. Tam giác ABC vuông.
2. r+r_a+r_b+r_c=a+b+c
3. r^2+r_a^2+r_b^2+r_c^2=a^2+b^2+c^2
Giải:
Trước hết gọi (I), (I_a), (I_b), (I_c) lần lượt là tâm đường tròn nội tiếp, bàng tiếp góc A, bàng tiếp góc B, bàng tiếp góc C của tam giác ABC.
Gọi D là trung điểm BC, N là trung điểm I_bIc Khi đó áp dụng tính chất đường trung bình của hình thang 2ND=r_b+r_c
Mà ND=R+OD=R+\frac{AH}{2} (H là trực tâm của tam giác ABC)
Mặt khác: Gọi X là tiếp điểm của (I) với BC, X' là tiếp điểm của (I_a) với BC.
I' đối xứng I qua O.
M là giao điểm của II_a và (O).
Ta có 2OD=I'X'+IX=r+2R-r_a Do I'X'=2R-r_a
Kết hợp tất cả những gì chứng minh ta có các đẳng thức sau:
a) r_a+r_b+r_c=4R+r
b) AH = 2R + r − r_a, BH = 2R + r − r_b, CH = 2R + r − r_c.
Như vậy 1. Tương đương AH+BH+CH+2R=a+b+c
2R(cosA+cosB+cosC)=2R(sinA+sinB+sinC)
Tương đương (sin\frac{C}{2}-cos\frac{C}{2})(cos\frac{A-B}{2}-cos\frac{C}{2}))=0
Điều phải chứng minh.
2. Tương đương (2R + r − r_a)^2+(2R + r − r_b)^2+(2R + r − r_c)^2+4R^2=a^2+b^2+c^2
(2R + r − r_a)^2+(2R + r − r_b)^2+(2R + r − r_c)^2+4R^2-(a^2+b^2+c^2))
= 4R^2(cos^2 A + cos^2 B + cos^2 C + 1 − sin^2 A − sin^2 B − sin^2 C)
= − 16R^2 cos A cos B cos C=0.
Như vậy tam giác ABC vuông.
Vậy ta có đpcm.
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Đăng ký:
Đăng Nhận xét (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho x^2 \equiv a (mod n) Ta cũng có th...
Không có nhận xét nào:
Đăng nhận xét