Bài toán: (Hải Phòng 2016) Cho tam giác nhọn ABC (AB<AC), phân giác trong đỉnh A cắt BC tại D, E là điểm trên đoạn BC sao cho BD=CE. Phân giác ngoài đỉnh A cắt đường thẳng qua D và vuông góc với BC tại F. I là trung điểm DF, đường thẳng EI cắt AD tại M, đường thẳng EF cắt đường thẳng qua M và vuông góc với BC tại K.
a) Đường thẳng AF cắt đường thẳng BC tại P, KD cắt đường tròn đường kính DF tại L (khác D). Chứng minh rằng đường thẳng PL tiếp xúc với đường tròn đường kính DF.
b) Chứng minh rằng I là tâm đường tròn nội tiếp tam giác KBC.
Lời giải:
a) Gọi N là giao điểm của KM và BC. Do I là trung điểm DF, DF// NK nên EI đi qua trung điểm NK. hay M là trung điểm NK
Ta có (LADF)=D(LADF)=D(KMNF)=-1 Vậy tứ giác ALFD điều hòa
Suy ra: tiếp tuyến tại L, AF, tiếp tuyến tại D đồng quy tại P hay PL là tiếp tuyến của đường tròn đường kính DF
b) Kẻ, BX, CY lần lượt là tiếp tuyến tới [DF]
(DXLY)=D(DXLY)=I(DBPC)=-1.Nên tứ giác DXLY điều hòa. Như vậy BX, CY, DL đồng quy
Gọi d là đường thẳng qua I song song BC, P là giao điểm EF và (I), M là trung điểm BC
Ta có: (XYFP)=D(XYFP)=I(BCdM)=-1
Vậy tiếp tuyến tại X, Y, và FP cũng đồng quy.
Ta có đpcm
Nhận xét: Thực ra đây là bài toán ngược của bài toán: Cho tam giác ABC có (I) nội tiếp. (I) tiếp xúc với BC, CA, AB tại D, E, F. EF cắt BC tại P. AD cắt (I) tại L. Khi đó PL là tiếp tuyến thứ 2 của (I).
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Đăng ký:
Đăng Nhận xét (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho x^2 \equiv a (mod n) Ta cũng có th...
Không có nhận xét nào:
Đăng nhận xét