Hiển thị các bài đăng có nhãn định lý Lyness. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn định lý Lyness. Hiển thị tất cả bài đăng

Thứ Năm, 23 tháng 3, 2017

Dùng định lý hàm số sin để chứng minh song song

Cho tam giác $ABC$ nội tiếp đường tròn (O) và ngoại tiếp đường tròn $(I)$. $(K)$ là đường tròn Mixtilinear góc A của tam giác $ABC$ tiếp xúc $(O)$, $AC,AB$ lần lượt tại $X, A_c, A_b$, $AX\cap A_bA_c= Y, XI \cap BC =K$. CMR: $KY \parallel AI$

Giải

Theo định lý Lyness $A_b$, $A_c$ và $I$ thẳng hàng. Vì $I$ là trung điểm $A_cA_b$ và $AX$ là đường đối trung của góc $\angle A_bXA_c$ ta có: $\measuredangle A_cXI= \measuredangle AXA_b = \measuredangle A_cCI$, nên $A_cCXI$ nội tiếp. tương tự $A_bBXI$ nội tiếp. $$\frac{XK}{KI} = \frac{XC}{CI} \cdot \frac{ \sin \angle BCX}{ \sin \angle ICB} = \frac{ \sin \angle XIC}{ \sin \angle IXC}\cdot \frac{ \sin \angle BCX}{ \sin \angle ICB}$$ $$\frac{ \sin \angle XIC}{ \sin \angle IXC}\cdot \frac{ \sin \angle BCX}{ \sin \angle ICB} = \frac{ \sin \angle XA_bY}{ \sin \angle AA_bY}\cdot \frac{ \sin \angle BAX}{ \sin \angle AXA_b}$$ $$\frac{ \sin \angle XA_bY}{ \sin \angle AA_bY}\cdot \frac{ \sin \angle BAX}{ \sin \angle AXA_b} = \frac{XY}{YA}$$ $\Longrightarrow \frac{XK}{KI} = \frac{XY}{YA} \Longrightarrow AI \parallel YK$

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...