Cho tam giác $ABC$ nội tiếp đường tròn (O) và ngoại tiếp đường tròn $(I)$. $(K)$ là đường tròn Mixtilinear góc A của tam giác $ABC$ tiếp xúc $(O)$, $AC,AB$ lần lượt tại $X, A_c, A_b$, $AX\cap A_bA_c= Y, XI \cap BC =K$. CMR: $KY \parallel AI$
Giải
Theo định lý Lyness $A_b$, $A_c$ và $I$ thẳng hàng. Vì $I$ là trung điểm $A_cA_b$ và $AX$ là đường đối trung của góc $\angle A_bXA_c$ ta có: $\measuredangle A_cXI= \measuredangle AXA_b = \measuredangle A_cCI$, nên $A_cCXI$ nội tiếp. tương tự $A_bBXI$ nội tiếp. $$\frac{XK}{KI} = \frac{XC}{CI} \cdot \frac{ \sin \angle BCX}{ \sin \angle ICB} = \frac{ \sin \angle XIC}{ \sin \angle IXC}\cdot \frac{ \sin \angle BCX}{ \sin \angle ICB}$$ $$\frac{ \sin \angle XIC}{ \sin \angle IXC}\cdot \frac{ \sin \angle BCX}{ \sin \angle ICB} = \frac{ \sin \angle XA_bY}{ \sin \angle AA_bY}\cdot \frac{ \sin \angle BAX}{ \sin \angle AXA_b}$$ $$\frac{ \sin \angle XA_bY}{ \sin \angle AA_bY}\cdot \frac{ \sin \angle BAX}{ \sin \angle AXA_b} = \frac{XY}{YA}$$ $\Longrightarrow \frac{XK}{KI} = \frac{XY}{YA} \Longrightarrow AI \parallel YK$
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Hiển thị các bài đăng có nhãn định lý Lyness. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn định lý Lyness. Hiển thị tất cả bài đăng
Thứ Năm, 23 tháng 3, 2017
Đăng ký:
Bài đăng (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho $x^2 \equiv a (mod n)$ Ta cũng có th...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...