Bài toán (IMO Shortlisted 2002): Cho trước đường tròn (O) và hai điểm A, B sao cho AB tiếp xúc với đường tròn (O) tại B. Lấy điểm C không nằm trên (O) sao cho AC cắt (O) tại hai điểm phân biệt, dựng đường tròn (w) tiếp xúc AC tại C, tiếp xúc với (O) tại D sao cho B, D nằm về hai phía của đường thẳng AC Chứng minh tâm đường tròn ngoại tiếp tam giác BCD nằm trên (ABC).
Lời giải:
Gọi I J thứ tự là tâm của (w) và (BCD), t là tiếp tuyến chung tại D của (O) và (w).
Từ giả thiết suy ra O, J nằm trên trung trực BD và I, J nằm trên trung trực CD suy ra
- Phép đối xứng trục OJ biến BA thành t
-phép đối xnwgs trục IJ biến DJ thành CJ và Dt thành AC. Khi đó:
$(BA;BJ) \equiv (DJ,t) \equiv (CA,CJ) (mod \pi)$
Từ đây suy ra điều phải chứng minh.
Nhận xét: Qua phép đối xứng trục bài toán trở nên đơn giản hơn rất nhiều.
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Hiển thị các bài đăng có nhãn đối xứng trục. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn đối xứng trục. Hiển thị tất cả bài đăng
Thứ Ba, 27 tháng 12, 2016
Thứ Tư, 3 tháng 8, 2016
Phép vị tự, nghịch đảo và đường thẳng steiner của tứ giác toàn phần
Bài toán: Cho tam giác ABC nội tiếp (O). Đường tròn nội tiếp (I) tiếp xúc BC, CA, AB tại D, E, F. AO cắt (O) tại A'. kẻ DG vuông EF.
a) Chứng minh rằng G, I, A' thẳng hàng.
b) Gọi H là trực tâm của tam giác ABC. Chứng minh: GD là phân giác của $\angle HGI$
Lời giải:
Cách 1: Gọi Ia, Ib, Ic là tâm đường tròn bàng tiếp góc A, B, C.
Ta có IaIbIc và tam giác DEF có các cạnh lần lượt song song với nhau nên tồn tại phép vị tự tâm K biến tam giác này thành tam giác kia.
Ta có I là trực tâm của tam giác IaIbIc, O là tâm đường tròn Euler nên I' đối xứng I qua O là tâm đường tròn ngoại tiếp tam giác đó
Phép vị tự tâm K biến G thành A, I thành I' nên GI song song AI'.
Mặt khác AII'A' là hình bình hành( do hai đường chéo cắt nhau tại trung điểm mỗi đường)
Nên ta có IA'//I'A
Vậy G, I, A' thẳng hàng
Cách 2: Phép nghịch đảo tâm I phương tích $r^2$ (r là bán kính đường tròn nội tiếp (I) ). biến đường tròn Euler qua G,M thành (O), EF thành (AIEF). vậy biến G thành T là giao của (AIEF) và (O). T thuộc đường tròn đường kính AI nên $ \angle ATI =90^o$ Vậy TGI đi qua A'.
Cách 3: G(DF,BC)=-1 nên GD là phân giác $\angle GBC$,$\Rightarrow \Delta GBF$ ~ $\Delta CGE$, dùng phép vị tự quay tâm T cho ta $ \frac{TE}{TF}=\frac{EC}{FB}=\frac{EG}{FG} $ nên TG là phân giác TFE, I là trung điểm cung EF cho ta điều phải cm
b) Gọi H' đối xứng I qua EF thì H' là trực tâm của tam giác AEF.
Do R là điểm Miquel của tam giác ABC nên đối xứng của R qua EF sẽ thuộc đường thẳng steiner đi qua H' của tam giác AEF, đi qua H của tam giác DEF, nên R' thuộc HH' là đường thẳng steiner của tứ giác toàn phần BCEF. Mặt khác IR cắt trục đối xứng là EF tại T nên R'TH' thẳng hàng.
Suy ra $\angle FTR'= $\angle ITE$
a) Chứng minh rằng G, I, A' thẳng hàng.
b) Gọi H là trực tâm của tam giác ABC. Chứng minh: GD là phân giác của $\angle HGI$
Lời giải:
Cách 1: Gọi Ia, Ib, Ic là tâm đường tròn bàng tiếp góc A, B, C.
Ta có IaIbIc và tam giác DEF có các cạnh lần lượt song song với nhau nên tồn tại phép vị tự tâm K biến tam giác này thành tam giác kia.
Ta có I là trực tâm của tam giác IaIbIc, O là tâm đường tròn Euler nên I' đối xứng I qua O là tâm đường tròn ngoại tiếp tam giác đó
Phép vị tự tâm K biến G thành A, I thành I' nên GI song song AI'.
Mặt khác AII'A' là hình bình hành( do hai đường chéo cắt nhau tại trung điểm mỗi đường)
Nên ta có IA'//I'A
Vậy G, I, A' thẳng hàng
Cách 2: Phép nghịch đảo tâm I phương tích $r^2$ (r là bán kính đường tròn nội tiếp (I) ). biến đường tròn Euler qua G,M thành (O), EF thành (AIEF). vậy biến G thành T là giao của (AIEF) và (O). T thuộc đường tròn đường kính AI nên $ \angle ATI =90^o$ Vậy TGI đi qua A'.
Cách 3: G(DF,BC)=-1 nên GD là phân giác $\angle GBC$,$\Rightarrow \Delta GBF$ ~ $\Delta CGE$, dùng phép vị tự quay tâm T cho ta $ \frac{TE}{TF}=\frac{EC}{FB}=\frac{EG}{FG} $ nên TG là phân giác TFE, I là trung điểm cung EF cho ta điều phải cm
b) Gọi H' đối xứng I qua EF thì H' là trực tâm của tam giác AEF.
Do R là điểm Miquel của tam giác ABC nên đối xứng của R qua EF sẽ thuộc đường thẳng steiner đi qua H' của tam giác AEF, đi qua H của tam giác DEF, nên R' thuộc HH' là đường thẳng steiner của tứ giác toàn phần BCEF. Mặt khác IR cắt trục đối xứng là EF tại T nên R'TH' thẳng hàng.
Suy ra $\angle FTR'= $\angle ITE$
Thứ Năm, 23 tháng 6, 2016
Dùng phép vị tự quay để giải bài toán hình học
Bài 1: Cho tứ giác ABCD gọi G là giao điểm của AC và BD. Gọi $O_1, O_2, O_3, O_4$ lần lượt là tâm của $ GAB, GBC. GCD, GDA$. Đường thẳng bất kì qua G cắt $(O_2), (O_4)$ tại J và K. Đường thẳng bất kì khác qua G cắt $(O_1), (O_3)$ tại $S$ và $T$. Gọi M là giao của $O_1O_2$ và $O_3O_4$, U, I là trung điểm ST và JK. Chứng minh rằng $MU=MI$.
Lời giải:
Gọi giao điểm thứ hai của $(O_1), (O_3)$ là Q, $(O_2), (O_4)$ là P. E, F là trung điểm AC, BD. Ta sẽ chứng minh G,E, F, P, Q cùng thuộc $w$
Xét phép vị tự quay tâm P biến B thành D, A thành C nên biến BD thành AC. Do E, F là trung điểm AC và BD nên biến E thành F, Suy ra tam giác APE đồng dạng PBF
Suy ra: $\widehat{PEG}=\widehat{PFG}$ nên tứ giác PGEF nội tiếp
Tương tự ta có tứ giác QGEF nội tiếp.
Ta có $O_2O_4$, $O_1O_3$ là trung trực của PG và GQ. nên M là tâm ngoại tiếp của 5 điểm P, Q, G, E, F.
Mặt khác tiếp tục xét phép vị tự quay tâm P biến S thành T và do I là trung điểm ST nên phép vị tự quay này biến I thành trung điểm F của BD nên tam giác IPS đồng dạng tam giác PFB. Suy ra $\widehat{PIG}=\widehat{PFG}$ Suy ra I thuộc đường tròn tâm M. Tương tự U cũng thuộc đường tròn tâm M.
Vậy MI=MU
Nhận xét: Nếu tứ giác ABCD nội tiếp (O) thì ta có OE và OF lần lượt vuông AC và BD, suy ra M là trung điểm PO. Suy ra OG vuông GP ( vì G thuộc đường tròn đường kính PO) Và đây là đề thi Trung Quốc 1992.
Bài 2 (Đề thi chọn đội tuyển Thụy Sĩ): Cho tam giác ABC nội tiếp (O), trực tâm H. D, E trên AB, AC sao cho D, H, E thẳng hàng và tam giác ADE cân tại A. (ADE) cắt (O) tại G. Chứng minh GH vuông GA.
Lời giải:
Gọi BB', CC' là các đường cao của tam giác ABC. R là giao của (AB'C') và (ABC) thì HMR thẳng hàng và HR vuông AR. Ta sẽ chứng minh R thuộc (ADE).
R là tâm phép vị tự quay biến C' thành B, B' thành C nên biến C'B thành B'C, mặt khác ta có:
$\frac{C'D}{BC'}=\frac{EB'}{CB'}$
Vậy biến D thành E.
DC' cắt EB' tại A nên tứ giác RDEA nội tiếp hay R thuộc (ADE)
Bài 3: Cho tam giác ABC nội tiếp (O). Đường tròn nội tiếp (I) tiếp xúc BC, CA, AB tại D, E, F. X là điểm chính giữa cung BC chứa A. (AIX) lần lượt cắt AB, AC tại Y, Z. (DYZ) cắt (I) tại W và D. Gọi M là trung điểm BC, P là tiếp điểm của đường tròn mixtilinear trong góc A. Chứng minh rằng:
a) BY=BM=CZ=CM
b) A, W, P thẳng hàng.
Lời giải:
Gọi N là giao điểm AI và (O).
a)Rõ ràng X, M, N thẳng hàng Phép vị tự quay tâm A. biến:
YB thành IN, nên: $BY=NI\cdot \frac{BX}{NX}=NB\cdot \frac{BX}{NX}=BM$ Tương tự CM=CZ.
b) Từ (1) suy ra Y, M đối xứng với nhau BI, Z, M đối xứng nhau qua CI suy ra I là tâm của (MYZ) và do:
YZ là trục đẳng phương (MYZ) và (YZDW) nên tâm của (YZDW) và I vuông góc YZ
Mặt khác có tâm của (YZDW) và I vuông WD ( WD là trục đẳng phương) nên:
WD song song YZ. Theo định lý Euler ta lại có:
$IP.IX=2rR=ID.XN$Suy ra tam giác IDP đồng dang tam giác XIN, và do XIN đồng dạng XZC (do phép vị tự quay tâm X) và IDP=IWP (Do D và W đối xứng) vậy:
tam giác IWP đồng dạng tam giác XZC.
$ \angle IPW= \angle XCA= \angle XPA$ nên P, W, A thẳng hàng.
Hay W và D đối xứng nhau qua IP
Lời giải:
Gọi giao điểm thứ hai của $(O_1), (O_3)$ là Q, $(O_2), (O_4)$ là P. E, F là trung điểm AC, BD. Ta sẽ chứng minh G,E, F, P, Q cùng thuộc $w$
Xét phép vị tự quay tâm P biến B thành D, A thành C nên biến BD thành AC. Do E, F là trung điểm AC và BD nên biến E thành F, Suy ra tam giác APE đồng dạng PBF
Suy ra: $\widehat{PEG}=\widehat{PFG}$ nên tứ giác PGEF nội tiếp
Tương tự ta có tứ giác QGEF nội tiếp.
Ta có $O_2O_4$, $O_1O_3$ là trung trực của PG và GQ. nên M là tâm ngoại tiếp của 5 điểm P, Q, G, E, F.
Mặt khác tiếp tục xét phép vị tự quay tâm P biến S thành T và do I là trung điểm ST nên phép vị tự quay này biến I thành trung điểm F của BD nên tam giác IPS đồng dạng tam giác PFB. Suy ra $\widehat{PIG}=\widehat{PFG}$ Suy ra I thuộc đường tròn tâm M. Tương tự U cũng thuộc đường tròn tâm M.
Vậy MI=MU
Nhận xét: Nếu tứ giác ABCD nội tiếp (O) thì ta có OE và OF lần lượt vuông AC và BD, suy ra M là trung điểm PO. Suy ra OG vuông GP ( vì G thuộc đường tròn đường kính PO) Và đây là đề thi Trung Quốc 1992.
Bài 2 (Đề thi chọn đội tuyển Thụy Sĩ): Cho tam giác ABC nội tiếp (O), trực tâm H. D, E trên AB, AC sao cho D, H, E thẳng hàng và tam giác ADE cân tại A. (ADE) cắt (O) tại G. Chứng minh GH vuông GA.
Lời giải:
R là tâm phép vị tự quay biến C' thành B, B' thành C nên biến C'B thành B'C, mặt khác ta có:
$\frac{C'D}{BC'}=\frac{EB'}{CB'}$
Vậy biến D thành E.
DC' cắt EB' tại A nên tứ giác RDEA nội tiếp hay R thuộc (ADE)
Bài 3: Cho tam giác ABC nội tiếp (O). Đường tròn nội tiếp (I) tiếp xúc BC, CA, AB tại D, E, F. X là điểm chính giữa cung BC chứa A. (AIX) lần lượt cắt AB, AC tại Y, Z. (DYZ) cắt (I) tại W và D. Gọi M là trung điểm BC, P là tiếp điểm của đường tròn mixtilinear trong góc A. Chứng minh rằng:
a) BY=BM=CZ=CM
b) A, W, P thẳng hàng.
Lời giải:
Gọi N là giao điểm AI và (O).
a)Rõ ràng X, M, N thẳng hàng Phép vị tự quay tâm A. biến:
YB thành IN, nên: $BY=NI\cdot \frac{BX}{NX}=NB\cdot \frac{BX}{NX}=BM$ Tương tự CM=CZ.
b) Từ (1) suy ra Y, M đối xứng với nhau BI, Z, M đối xứng nhau qua CI suy ra I là tâm của (MYZ) và do:
YZ là trục đẳng phương (MYZ) và (YZDW) nên tâm của (YZDW) và I vuông góc YZ
Mặt khác có tâm của (YZDW) và I vuông WD ( WD là trục đẳng phương) nên:
WD song song YZ. Theo định lý Euler ta lại có:
$IP.IX=2rR=ID.XN$Suy ra tam giác IDP đồng dang tam giác XIN, và do XIN đồng dạng XZC (do phép vị tự quay tâm X) và IDP=IWP (Do D và W đối xứng) vậy:
tam giác IWP đồng dạng tam giác XZC.
$ \angle IPW= \angle XCA= \angle XPA$ nên P, W, A thẳng hàng.
Hay W và D đối xứng nhau qua IP
Bài 4: Cho tam giác ABC có (I) là tâm nội tiếp và các tiếp điểm D, E, F trên BC, CA, AB. đường thẳng qua D vuông EF cắt AB tại X. Gọi T là giao điểm của (ADE) và (ABC). Chứng minh rằng
a) TF vuông TX
b) Tâm đường tròn nội tiếp của tam giác TEF thuộc (I) (thinhrost1)
Lời giải:
AI cắt (ABC) tại G, Gọi AA' là đường kính của (O). Theo kết quả quen thuộc T, I, A' thẳng hàng.
Phép vị tự quay tâm T biến B thành F, C thành E nên
tam giác TBF đồng dạng tam giác TCE nên :
BD/CD=BF/CE=TB/TC như vậy TD là phân giác của $\angle BTC$. Phép vị tự quay tâm T biến EF thành BC biến (TEF) thành (TBC) nên biến I thành G, mà T,D,G thẳng hàng nên gọi Y là giao TI và EF thì phép vị tự này biến Y thành D, do biến I thành G và TDG, TYI thẳng hàng nên YD song song IG hay YD vuông EF như vậy BF cắt DY tại X thì suy ra tứ giác TFXY nội tiếp suy ra: $ \angle XTF= 90^o$
b) Gọi J là tâm nội tiếp của TEF, K là tâm nội tiếp TBC. Thì phép vị tự quay tâm T biến J thành K. Biến TJ, FJ, EJ thành BK, TK, CK, nên $\ange FIE = \angle BJC$ mà $ \angle BJC=90^0+\angle T/2 =90^0+\angle A /2 = \angle FDE$ Vậy IDFE nội tiếp. ta có đpcm
Đăng ký:
Bài đăng (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho $x^2 \equiv a (mod n)$ Ta cũng có th...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...