Bài toán (Canada 1998): Tam giác ABC có $\angle CAB=40^o, \angle ABC=60^o$. Lấy $D \in AC, E \in AB$ sao cho $\angle CBD=40^o$ $\angle BCE=70^o$. Gọi F là giao điểm của BD và CE. Chứng minh rằng AF vuông góc BC.
Giải:
Đặt $x=m(\widehat {BAF})$. nên $m(\widehat {CAF})=40^{\circ}-x$, $m(\widehat {BCF})=70^{\circ}$, $m(\widehat {ACF})=10^{\circ}$, $m(\widehat {ABF})=20$, $m(\widehat {CBF})=40^{\circ}$. Áp dụng định lý Ceva-sin cho tam giác ABC có BD,CE,AF đồng quy tại F:
$\sin x\sin 40^{\circ}\sin 10^{\circ}=\sin (40^{\circ}-x)\sin 20^{\circ}\sin 70^{\circ}\Longleftrightarrow$
$2\sin x\sin 10^{\circ}=\sin (40^{\circ}-x)\Longleftrightarrow$
$\cos (x-10^{\circ})-\cos (x+10^{\circ})=\cos (50^{\circ}+x)\Longleftrightarrow$
$\cos (x+10^{\circ})= \cos (x-10^{\circ})-\cos (50^{\circ}+x)\Longleftrightarrow$
$\cos (x+10^{\circ})=2\sin (x+20^{\circ})\sin 30^{\circ}\Longleftrightarrow$
$\cos (x+10^{\circ})=\cos (70^{\circ}-x)\Longleftrightarrow x=30^{\circ}\Longleftrightarrow AF\perp BC\ .$
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Hiển thị các bài đăng có nhãn định lý Ceva-sin. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn định lý Ceva-sin. Hiển thị tất cả bài đăng
Thứ Ba, 27 tháng 12, 2016
Thứ Năm, 8 tháng 12, 2016
Định lý Dergiades
Định lý Dergiades: Cho tam giác ABC. 3 đường tròn ωa, ωb, ωc lần lượt đi qua các cặp
đỉnh B, C; C, A; A, B. Gọi D, E, F là giao điểm thứ hai của 3 đường tròn này. Đường thẳng Qua D
vuông góc với AD cắt BC tại X. Tương tự xác định Y, Z. Khi đó X, Y, Z thẳng hàng.
Chứng minh:
Đặt ∠BEC = ∠BF C = α, ∠ADC = ∠AF C = β, ∠AEB = ∠ADB = γ, bán kính của ωa, ωb, ωc lần lượt tại Ra, Rb, Rc.
Ta có XB/XC = (BD · sin ∠XDB)/( CD · sin ∠XDC) = [BD · (− cos ∠ADB)]/[ CD · (− cos ∠ADC) ]= (BD · cos γ)/( CD · cos β . )
Chứng minh tương tự suy ra XB /XC · Y C/ Y A · ZA /ZB = BD/ CD · CE /AE · AF/ BF
Ta lại có BD/ CD = 2Rc sin ∠BAD /2Rb sin ∠CAD . Tương tự và áp dụng định lý Céva sin cho tam giác ABC với các đường AD, BE, CF đồng quy tại tâm đẳng phương của ωa, ωb, ωc ta thu được
BD /CD · CE /AE · AF/ BF = 1. Vậy X, Y, Z thẳng hàng
Chứng minh:
Đặt ∠BEC = ∠BF C = α, ∠ADC = ∠AF C = β, ∠AEB = ∠ADB = γ, bán kính của ωa, ωb, ωc lần lượt tại Ra, Rb, Rc.
Ta có XB/XC = (BD · sin ∠XDB)/( CD · sin ∠XDC) = [BD · (− cos ∠ADB)]/[ CD · (− cos ∠ADC) ]= (BD · cos γ)/( CD · cos β . )
Chứng minh tương tự suy ra XB /XC · Y C/ Y A · ZA /ZB = BD/ CD · CE /AE · AF/ BF
Ta lại có BD/ CD = 2Rc sin ∠BAD /2Rb sin ∠CAD . Tương tự và áp dụng định lý Céva sin cho tam giác ABC với các đường AD, BE, CF đồng quy tại tâm đẳng phương của ωa, ωb, ωc ta thu được
BD /CD · CE /AE · AF/ BF = 1. Vậy X, Y, Z thẳng hàng
Thứ Năm, 7 tháng 7, 2016
Dùng định lý Ceva-sin để chứng minh bài toán
Đề bài: (Luiz Gonzalez) $\triangle ABC$, $P$. $PA$, $PB$, $PC$ cắt $BC,CA,AB$ tại $D,E,F$. Chứng minh trục đẳng phương của 3 cặp đường tròn sau đồng quy: $(ABE)$ và $(ACF)$, $(BCF)$ và $(BAD)$, $(CAD)$ và $(CBE)$
Lời giải:
Gọi $X,Y,Z$ lần lượt là giao điểm thứ hai của $(ABE)$ và $(ACF),(BCF)$ và $(BAD),(CAD)$ và $(CBE)$

Hình vẽ bài toán
Ta có: $\frac{\sin \measuredangle XAB}{\sin \measuredangle XAC}=\frac{BX}{EX}$
Mặt khác $\triangle FXB\sim \triangle CXE$ nên $\frac {BX}{EX}=\frac{BF}{EC}\Longrightarrow \frac{\sin \measuredangle XAB}{\sin \measuredangle XAC}=\frac{BF}{EC}$. Tương tự với các cặp đường tròn còn lại
Theo định lí $Ceva$ dạng hình học thì $\frac{FA}{FB}.\frac{DB}{DC}.\frac{EC}{EA}$ nên theo định lí $Ceva$ dạng lượng giác thì $AX,BY,CZ$ đồng quy. $\blacksquare$
Lời giải:
Gọi $X,Y,Z$ lần lượt là giao điểm thứ hai của $(ABE)$ và $(ACF),(BCF)$ và $(BAD),(CAD)$ và $(CBE)$
Hình vẽ bài toán
Ta có: $\frac{\sin \measuredangle XAB}{\sin \measuredangle XAC}=\frac{BX}{EX}$
Mặt khác $\triangle FXB\sim \triangle CXE$ nên $\frac {BX}{EX}=\frac{BF}{EC}\Longrightarrow \frac{\sin \measuredangle XAB}{\sin \measuredangle XAC}=\frac{BF}{EC}$. Tương tự với các cặp đường tròn còn lại
Theo định lí $Ceva$ dạng hình học thì $\frac{FA}{FB}.\frac{DB}{DC}.\frac{EC}{EA}$ nên theo định lí $Ceva$ dạng lượng giác thì $AX,BY,CZ$ đồng quy. $\blacksquare$
Đăng ký:
Bài đăng (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho $x^2 \equiv a (mod n)$ Ta cũng có th...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...