Hiển thị các bài đăng có nhãn hai đường đẳng giác. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn hai đường đẳng giác. Hiển thị tất cả bài đăng

Chủ Nhật, 1 tháng 1, 2017

Một số bài toán về đường tròn Mixtilinear

Bài 1: Cho tam giác ABC nội tiếp (O), đường tròn Mixtilinear  trong góc A tiếp xúc (O) tại P. Phân giác góc A cắt BC và (O) tại Q, M. đường tròn bàng tiếp góc A tiếp xúc BC tại N. Chứng minh rằng MN và PQ cắt nhau trên (O).

Lời giải:

Xét phép f: nghịch đảo tâm A phương tích AB.AC và phép đối xứng qua phân giác góc A, ta có:
f biến B thành C, C thành B, biến Q thành M.
qua phép nghịch đảo điểm P' là điểm tiếp xúc của đường tròn bàng tiếp góc A của tam giác AB'C' nên qua phép đối xứng phân giác P chính là N.

Do phép đối xứng phân giác ta có $\angle PAQ=  \angle NAM$
Mặt khác AP.AN=AB.AC=AQ.AM suy ra tam giác APQ và tam giác AMN đồng dạng suy ra A là tâm của phép vị tự quay biến PQ thành MN, suy ra PQ và MN cắt nhau trên (O).

Bài 2: Cho $\triangle ABC$ Gọi $I_A$ và $I$ là đường tròn bàng tiếp góc A and tâm đường tròn nội tiếp. Gọi $A$-mixtilinear (gọi là $\Gamma$), và $(I_A)$ tiếp xúc $(ABC)$ và $BC$ tại $T$ và $D$, theo thứ tự đó. Gọi $AI\cap (ABC)=\{ M\}$ và $(TMI)\cap \Gamma=\{ E\}\neq T$.
$\textbf{a.)}$ CMR $I_ADEI$ nội tiếp.
$\textbf{b.)}$ Giả sử $(I_ADI)\cap \Gamma=\{ S\}\neq E$, CMR khi đó $(BSC)$ tiếp xúc$\Gamma$.

Lời giải:

Ta sẽ vẽ hình câu a) và b) riêng để cho dễ nhìn:

a)

Phép nghịch đảo đối xứng qua phân giác góc A phương tích AB.AC biến E là giao của (w) và (IMT) thành E' là giao cả $(I_A)$ và $(DLI_A)$. Mặt khác Do góc LD$I_A$ vuông tại D và DL là tiếp tuyến của $(I_A)$từ đây suy ra $E'L$ cũng là tiếp tuyến của $(I_A)$ suy ra LE'=LD $\Rightarrow AE'=AD$ như vậy AB.AC=AE'.AE=AD.AE=AI.$AI_A$ suy ra điều phải chứng minh.

b)  
Gọi $\Phi$ là phép nghịch đảo tâm $A$ phương tích $\sqrt{AB\cdot AC}$ và đối xứng qua phân giác $\angle BAC$. Gọi $ID\cap (I_A)=R$, $MD\cap (ABC)=\{ G \}$, $\Gamma \cap AB,\ AC=\{ X\},\ \{Y\}$, $XY\cap BC=\{ Z\}$, gọi $A_H$ là chân đường cao từ $A$ và $A_1$ là điểm đối xứng của $A$ qua tâm $(ABC)$.
Ta chứng minh hai bổ đề:
Bổ đề 1: MD, TK, $I_AA_1$ đồng quy.

Chứng minh: Theo bài 1 thì MD và TK đồng quy trên (O) ta gọi điểm đó là G

Dễ thấy $AKDG$ nội tiếp (do phương tích), vì thế $\angle ZDA=\angle KDA=\angle KGA=\angle TMA=\angle ZMA$, nên $ZMDA$ nội tiếp, $$\Phi(MD)\cap \Phi(KT)\in \Phi((ABC))=BC\Longrightarrow \Phi(G)=Z\ . \ . \ . \ \spadesuit$$
để ý rằng  $\angle AIZ=90^{\circ}=\angle AA_HZ\Longrightarrow AIA_HZ$ nội tiếp, nhưng vì, $AA_1$($A_1\in (ABC)$) và $AA_H$($A_H\in BC$)$\Longrightarrow A_1=\Phi( A_H),\ I_A=\Phi(I),\ G\stackrel{\spadesuit}{=}\Phi(Z)$ thẳng hàng.

Bổ đề 2; Cho tam giác ABC có I là tâm nội tiếp, D là tiếp điểm bàng tiếp góc A trên BC, ID cắt đường tròn bàng tiếp góc A tại S. CMR (BSC) tiếp xúc đường tròn bàng tiếp góc A

Gọi tâm của đường tròn bàng tiếp góc A $A$ và $(BCS)$ là $E,O$. Gọi $DS$ là giao điểm của $(BCS)$ và SD tại $X$. Theo bài toán quen thuộc hai đường tròn này tiếp xúc nhau $\iff$ $XO\parallel DE$ $\iff$ $OX\perp BC$ $\iff$ $DS$ chia đôi $\angle BSC$.
Gọi $G$ là chân đường vuông góc từ $I$ tới $BC$. $F$ trên $BC$ sao cho $(B,C;D,F)=-1$. theo hàng điểm điều hòa $DS$ phân giác $\angle BSC$ $\iff$ $\angle FSD=90$ $\iff$ $I,G,S,F$ Đồng viên
Gọi $M$ là trung điểm $BC$, nên cũng là trung điểm $GD$(Dễ chứng minh). Gọi $N$ là trung điểm của $DS$, nếu $I,G,S,F$ đồng viên $\iff$ $I,M,N,F$ đồng viên (dùng đường đối song) $\iff$ $MD.DF=ID.DN$. Vì $N$ là trung điểm $DS$, suy ra $EN\perp IS$, có nghĩa là $I,B,E,N,C$ đồng viên $\Rightarrow$ $ID.DN=BD.DC$. Dùng tính chất hàng điểm điều hòa $MD.DF=BD.DC$. Vì thế $ID.DN=BD.DC=MD.DF$, Điều phải chứng minh.

Vào bài toán:

Chú ý bổ đề [b]bổ đề 1[/b] nên $MD$, $KT$ và $I_AA_1$ đồng quy trên $(ABC)$.
Vì $$\angle I_AIZ=90^{\circ}=I_ADZ\Longrightarrow Z\in (I_ADI)\ . \ . \ . \ \bigstar$$
Và $$\Phi(D)=T\stackrel{\bigstar}{\Longrightarrow} \Phi((I_ADIZ))\stackrel{\spadesuit}{=}(GTII_A)=\omega\ . \ . \ . \ \clubsuit$$.
Nếu $N$ là trung điểm $AA_H$, theo bổ đề quen thuộc $R$, $I$, $D$ và $N$ thẳng hàng.$\blacksquare$

Nếu ta chứng minh $R\in \omega$, Khi đó dùng bổ đề 2, ta có điều phải chứng minh.


$\begin{align*}R\in \omega\Longleftrightarrow \angle I_ARI&= \angle I_AGI\\&= \angle A_1GI\\
&= \angle A_1GK+\angle KGI\\&\stackrel{\text{Bo de}}{=} \angle A_1GT+\angle TGI\\&\stackrel{\clubsuit}{=} \angle A_1AT +\angle TI_AI\\&\stackrel{AD\text{ va } AT,\ AA_1\text{ va } AA_H \text{dang giac}}{=} \angle A_HAD+\angle TI_AA\\&= \angle A_HAD+\angle A\Phi(T)\Phi(I_A)=\angle A_HAD+\angle ADI\\&\stackrel{\blacksquare}{=} \angle NAD+\angle ADN\\&= \angle DNA_H\\&\stackrel{I_AD||NA_H}{=}\angle RDI_A\\&\stackrel{I_AD=I_AR=\text{ban kinh }(I_A)}{=}\angle I_ARD\\&= \angle I_ARI
\end{align*}.$

Bài 3: Cho $\triangle ABC$ có tâm nội tiếp $I$, tâm bàng tiếp với góc $A$, $I_A$, nội tiếp $\Gamma$. Gọi giao điểm của đường tròn Mixtilinear ngoài và trong góc A tiếp xúc $\Gamma$ tại $P$ và $Q$, theo thứ tự đó, $AI\cap BC=\{ K \}$ và $AI\cap \Gamma=\{ L \}$ đường tròn nội tiếp $\triangle ABC$ tiếp xúc $BC$ tại $D$. $A_1$ là điểm đối xứng của $A$ qua tâm $\Gamma$ và $QL\cap BC=\{ T \}$, Chứng minh $\odot (KDA)$, $\odot (I_API)$, $A_1I$, $AT$, $PK$ và $LD$ đồng quy trên $\Gamma$.
1:AT,LD đồng quy trên $\odot ABC$ 

Chiếu $(A,C;B,Q)$ từ $L$ đến $\odot ABC$($AT\cap \odot ABC={R}$)
$$L(A,Q;B,C)=(K,T;B,C)=A(K,T;B,C)=(L,R;B,C)=\frac{LB\cdot RC}{RB\cdot LC}=\frac{RC}{RB}=\frac{AB\cdot QC}{QB\cdot AC}$$
Nghịch đảo $\mathcal{I}_{L,LC}$ : $BC$ $\rightarrow$ $\odot ABC$vì thế ( $BD\cap \odot ABC={R'}$):
$$\frac{BD}{BR'}=\frac{BL\cdot LD}{BL^2}=\frac{CD}{CR'}$$
Do $AQ$ đẳng giác với AZ ($Z$ tiếp điểm đường tròn bàng tiếp trên BC)
$$\frac{AB\cdot QC}{QB\cdot AC}=\frac{BZ}{CZ}=\frac{BD}{CD}=\frac{RC}{RB}=\frac{R'C}{R'B}$$
Vì $Z,D$ đẳng giác vì thế $R\equiv R'$.$\clubsuit$

2:$\odot KDA$ qua $R$

Xét phép nghịc đảo $\mathcal {I} _{L,LB}$ biến $BC$ thành $\odot ABC$ và $D$ $\rightarrow$ $R$,$K$ $\rightarrow$ $A$
Ta có $LD\cdot LR=LK\cdot LA=LB^2$ Vì thế $KDAR$ nội tiếp.$\clubsuit$

3:$PK$ qua $R$

Xét phép nghịch đảo cực A phương tích AB.AC và đối xứng qua phân giác $\angle BAC$ ta có đường tròn Mixtilinear ngoại thành đường tròn nội tiếp và $AQ$ thành $AD$ vì thế $AQ$ đẳng giác với nhau trong góc $A$..Đặt $RK\cap \odot ABC={P'}$:
$$\angle ALP'=\angle KDR =\angle KAD$$
Suy ra $AP',AD$ đẳng giác nên ta có đpcm.$\clubsuit$

4:$\odot PII_{A}$ qua $T$

$P,K,R$ thẳng hàng $BK\cdot KC=PK\cdot KR=IK\cdot KI_{A}$ và $\odot PII_{A}R$ nội tiếp.$\clubsuit$

5 :$A_{1}I$ qua $R$

Phép nghịch đảo $\mathcal {I}_{L,LB}$ cố định $\odot IDR$ và $IL$ là tiếp tuyến của nó.Gọi $IR\cap \odot ABC={A'_{1}}$, $F$ là chân đường cao từ $A$ đến $BC$:
$$\angle A'_{1}AL=\angle LRI=\angle LID=\angle KAF=\angle A_{1}AL$$
Vì thế $A_{1}\equiv A'_{1}$ đpcm.$\clubsuit$.


Bài 4 (APMC 2016): Cho $\triangle ABC$ có đường tròn Mixtilinear trong góc A , $\omega$, Và tâm bàng tiếp $I_A$. Gọi $H$ là chân đường cao từ $A$ đến $BC$, $E$ trung điểm cung $\overarc{BAC}$ và $M$,$N$, là trung điểm $BC$ ,$AH$, theo thứ tự đó. Giả sử $MN\cap AE=\{ P \}$ Và $I_AP$ cắt $\omega$ tại $S$ và $T$ theo thứ tự: $I_A-T-S-P$. CMR: đường tròn ngoại tiếp $\triangle BSC$ và $\omega$ tiếp xúc nhau.

Lời giải:

Ta đặt lại $ S $ là điểm mà $ \odot (BSC) $ tiếp xúc $ \omega $ tại $ S $ và $ P $ là giao điểm $ AE, $ $ MN. $ Ta sẽ cm rằng $ I_A, $ $ P, $ $ S $ thẳng hàng. Gọi $ I $ là tâm nội tiếp của $ \triangle ABC $ và đặt $ J $ $ \in $ $ IN $ là điểm tiếp xúc của $ \odot (I_A) $ với $ BC. $ Đặt $ V $ $ \in $ $ EI $ là điểm tiếp xúc của $ \omega $với đường tròn ngoại tiếp $ \triangle ABC $ , $ D $ là giao điểm của $ BC, $ $ EI. $ Vì $$ \frac{I_AA}{I_AI} = \frac{JN}{JI} = \frac{1}{2} \cdot \frac{\text{dist}(A,BC)}{\text{d}(E,BC)} \cdot \frac{\text{d}(E,BC)}{\text{d}(I,BC)} = \frac{PA}{PE} \cdot \frac{DE}{DI} \ , $$Dùng định lý Menelaus cho $ \triangle AIE $ và $ D, $ $ P, $ $ I_A $ we get $ I_A, $ $ D, $ $ P $ thẳng hàng $ \qquad $ $ (\ddagger). $

Mặt khác cực của $ X $ thuộc $ SV $ đối với $ \omega $ nằm trên $ BC, $ chú ý đường tròn tâm $ X $ bán kính $ XD $ $ = $ $ XS $ $ = $ $ XV $ là đường tròn Appolonius của góc V của $ \triangle BVC $ ta được $ SD $ phân giác $ \angle BSC $ Do bài 2b) thì $DII_A$ đi qua điểm S, mặt khác tứ giác $I_AID'J$ nội tiếp (D' là giao của đường thẳng qua I vuông góc AI), từ đây suy ra $SI_A \perp SD'$ mặt khác SD vuông SD' do phân giác và phân giác ngoài $ \Longrightarrow $ $ I_A, $ $ D, $ $ S $ thẳng hàng (, kết hợp với $ (\ddagger) $ kết luân $ I_A, $ $ D, $ $ P, $ $ S $ thẳng hàng.

Bài 5: (Đề thi HSGS lớp 10, vòng 2):

Tam giác $ABC$ nội tiếp đường tròn $(O)$, đường tròn $(K)$ tiếp xúc $(O)$ tại $D$ và tiếp xúc $AC,AB$ lần lượt tại $E,F$. $AL$ là đường kính của $(O)$. $KE,KF$ lần lượt cắt $LB,LC$ tại $M,N$.Chứng minh rằng $AD\perp MN$

Lời giải:

Gọi $ T $ là giao điểm thứ hai của $ \odot (O) $ với đường tròn đường kính $ AK $ và gọi $ J $ $ \equiv $ $ AT $ $ \cap $ $ EF. $ Rõ ràng, $ J $ là tâm đẳng phương$ \odot (K), $ $ \odot (O), $ $ \odot (AK), $ vì thế$ DJ $tiếp xúc $ \odot (K) $ và$ \odot (O) $ tại $ D. $ Mặt khác, $ TA, $ $ TK $ phân giác$ \angle ETF, $ cắt tại $ X $ thuộc $ EF, $ $ TK $ liên hợp $ J $ đối với $ E, $ $ F, $ Vì thế$ A, $ $ D, $ $ X $ nằm trên cực của $ J $ đối với $ \odot (K). $ Vì $ KMLN $ là hình bình hành$ KL $ đi qua trung điểm $ MN, $ Kết luân $$   (\perp MN, AT; AE, AF) = (\perp MN, \perp LK; \perp LC, \perp LB) = -1 = A( X, T; E, F) \Longrightarrow AD \perp MN. $$



Cách khác nghịch đảo: Xem tại đây

Hai bài 6,7 lấy từ anh Quang Dương
Bài toán 6: Cho $\triangle ABC$, đường tròn mixtilinear nội tiếp và bàng tiếp góc $\widehat{BAC}$ của $\triangle ABC$ là $(I_a)$ và $(J_a)$ tiếp xúc $(ABC)$ thứ tự tại $P, Q$. $PQ$ cắt $BC$ tại $E$. Khi đó $AE$ tiếp xúc $(BAC)$.



Chứng minh:
Xét phép nghịch đảo cực $A$ phương tích $AB.AC$ hợp với phép đối xứng trục phân giác góc $\widehat{BAC}$:
$I_{A}^{AB.AC} \circ Đ_{l} : X \Leftrightarrow X' $.
Khi đó $C \equiv B', B \equiv C'$. $P', Q'$ thứ tự là tiếp điểm của đường tròn bàng tiếp góc $A$ và nội tiếp của $\triangle ABC$ với đường thẳng $BC$. Khi đó $P', Q'$ đối xứng nhau qua trung trực $BC$. Qua $A$ kẻ đường thẳng song song với $BC$ cắt $(ABC)$ tại điểm thứ hai $R$ thì $R \in (AP'Q')$. Do đó $R \equiv E'$. $AR, AE$ đẳng giác nên $AE$ là tiếp tuyến của $(ABC)$.
Bài toán 7: Cho tam giác $ABC$ nội tiếp $(O)$. Đường tròn mixtilinear nội tiếp góc $A$ là $(I_a)$ của $\triangle ABC$ tiếp xúc $AB, AC$ và $(O)$ tại $D, E, F$. $AF$ cắt $DE$ tại $L$. Đường thẳng qua $L$ vuông góc $OA$ cắt $BC$ tại $G$. Khi đó $FG$ tiếp xúc $(O)$.



Chứng minh:
$DE$ cắt $BC$ tại $K$. Gọi $I$ là tâm nội tiếp $\triangle ABC$. $AH$ là đường cao tam giác $ABC$. Ta có $(LG, LK) \equiv (AO, AI_a) \equiv (AI, AH) \equiv (KL, KG)$ (mod $\pi$). Do đó $\triangle GLK$ cân tại $G$. Hơn nữa ta có tính chất: $AI$ cắt $FK$ tại $J$ là điểm chính giữa cung $BC$ không chứa $A$ của tam giác $ABC$. Ta có $(FK, FA) \equiv (FJ, FA) \equiv (BJ, BA) \equiv (BJ, BC) + (BC, BA) \equiv (AJ, AC ) + \frac{\pi}{2} - (OA, AC) \equiv (AJ, AO) + \frac{\pi}{2} \equiv \frac{\pi}{2} - (LG, LK)$ (mod $\pi$). Do đó $G$ là tâm $(DKF)$. Suy ra $(FG, FA) \equiv \frac{\pi}{2} - (DE, FJ) \equiv \frac{\pi}{2} - (DE, AJ) + (JF, JA) \equiv (CF, CA)$. Do vậy $GF$ là tiếp tuyến của $(O)$.

Bài 8 (Mạnh Tuấn): Cho $\triangle ABC$, đường tròn Mixtilinear nội tiếp xúc $(O)$ tại $D$, tiếp xúc $CA,AB$ tại $E,F$. Tiếp tuyến tại $D$ của $(O)$ cắt $BC$ tại $P$.$AD$ cắt $EF$ tại $L$. Khi đó $PL \perp AO$
Chứng minh Gọi $f(X)$ là ảnh của $X$ qua phép nghịch đảo $I^A_{AB.AC}$ hợp với phép đối xứng trục qua phân giác $\angle BAC$
Khi đó $f(B)= C, f(C) = B, f((I)) = (J)$ là đường tròn bàng tiếp $\angle A$. $f(D), f(E), f(F) $ là tiếp điểm của $(J)$ với $BC,CA,AB$. $f(L) $ là giao của $Af(D)$ với$ (Af(E)f(F))$. $f(P)$ là giao của đường tròn qua $D$ tiếp xúc $BC$ và $(ABC)$


Viết lại bài toán dưới cấu hình đường tròn nội tiếp, ta được bài toán tương đương :
Cho $\triangle ABC$ với đường tròn nội tiếp $(I)$ tiếp xúc $BC,CA,AB$ tại $D,E,F$. $AH$ là đường cao ($H \in BC$). $AD$ cắt $(AEF)$ tại $M$. Đường tròn qua $A,M$ trực giao với $AH$ cắt $(O)$ tại $G$. Chứng minh rằng $(AGD)$ tiếp xúc $(O)$


$IM$ cắt $BC$ tại $S$. Khi đó $S,E,F$ thẳng hàng.
Gọi $A'$ đối xứng $A$ qua $O$, $IM$ cắt $AH$ tại $R$ và $T$ là trung điểm $ID$
Theo 1 bài toán quen thuộc thì $R,T,A'$ thẳng hàng. Lại có $\angle AGR = 90^{\circ}$ nên $G,R,T,A'$ thẳng hàng
$X$ là trung điểm $SD$ , $AX$ cắt $(O)$ tại $G'$, $G'A'$ cắt $ID$ tại $T'$
Ta có $XD^2 = XB.XC = XG'.XA \implies (AG'D)$ tiếp xúc $(I)$ tại $D$
Gọi $K$ là tâm $(AG'D)$ .Khi đó $K,I,D$ thẳng hàng
Có $\angle XG'D = \angle XT'D = 90^{\circ} - \angle KDA \implies SH \perp AD$
Lại có $SI \perp AD \implies T'X \parallel IS \implies T'$ là trung điểm $ID$
Vậy $G \equiv G' \implies (AGD)$ tiếp xúc $BC$. Ta có điều cần chứng minh

Thứ Ba, 6 tháng 12, 2016

Một bổ đề hai đường tiếp xúc và ứng dụng

Ta có bổ đề sau: Cho tam giác ABC, trên BC lấy hai điểm D, E sao cho AD, AE đẳng giac trong góc A khi và chỉ khi (ADE) tiếp xúc (ABC).

Bổ đề được chứng minh bằng cách kẻ tiếp tuyến tại A của (ABC) rồi sau đó cộng góc đơn giản có thể suy ra tiếp tuyến tại A của (ABC) cũng là tiếp tuyến tại A của (ADE) suy ra đpcm.

Bài toán 1 (Brazil 2011):  Cho tứ giác ABCD nội tiếp (O), r và s là hai tiếp tuyến tại B, C của (O). r, s cắt AD tại M và N. BN cắt CM tại E. AE cắt BC tại F và L là trung điểm BC. Chứng minh (DLF) tiếp xúc (O).

Gọi K là giao điểm của r và s. Ta có L là trung điểm của BC và cần chứng minh (DFL) tiếp xúc (DBC) là (O), mà L là trung điểm BC. nên ta chỉ cần chứng minh DF là đối trung của tam giác DBC hay D,F,K thẳng hàng.

Áp dụng định lí Sin và Menelaus ta có:

$\frac{sin\angle BKF}{sin\angle FKC}=\frac{BF}{FC}=\frac{BE}{EC}\frac{sin\angle AEN}{sin\angle MEA}=\frac{BE}{EC}\frac{AN}{AM}\frac{ME}{EN}=\frac{ME}{EC}\frac{BE}{EN}\frac{AN}{AM}=\frac{MB}{BK}\frac{NK}{NC}\frac{MB}{MK}\frac{CK}{CN}\frac{AN}{AM}=\frac{MB^{2}}{NC^{2}}\frac{NK}{MA}\frac{NA}{MK}=\frac{MD}{MK}\frac{NK}{ND}=\frac{sin\angle MKD}{sin\angle DKN}$

Từ đây siu ra F, D, K thẳng hàng ta có đpcm
cách 2:
Gọi $ X=BM \cap CN, Y=AD \cap BC, Z=AC \cap BD $ .

Vì $ BC $ là đường đối cực của $ X $ đối với $ (O) $ ,
từ $ X(E,Y;C,B)=-1 $ ta có $ XE $ là đường đối cực của $ Y $ đối với $ (O) $ .
vì $ XZ $ là đường đối cực $ Y $ đối với $ (O) $ ,
nên $ X, E, Z $ thẳng hàng và $ C(B,A;N,M)=B(C,D;M,N) $ ,
vì thế $ (Y,F;B,C)=(Y,A;N,M)=C(B,A;N,M)=B(C,D;M,N)=(Y,D;M,N) $ .
suy ra $ D, F, X $ thẳng hàng

Vì $ DF $ là đường đối trung $ \triangle DBC $ ,
ta nhận đc $ \angle BDL=\angle FDC $ and $ (DLF) $ tiếp xúc $ (O) $ tại $ D $ .

Bài toán 2 : Cho tam giác $ABC$ nội tiếp $(O)$. $M,N$ trên $(O)$ sao cho $MN\parallel BC$ và $AB$ nằm giữa $AM,AC$. $CM$ cắt $BN$ tại $S$. $BM$ cắt $CN$ tại $T$. $P$ là một điểm trên $(O)$. $PT$ cắt đường thẳng qua $S$ song song $BC$ tại $Q$. Chứng minh rằng $(QPS)$ tiếp xúc với $(O)$
Lời giải

Gọi $ T'=PT \cap \odot (O) $ và $ S'=PS \cap \odot (O) $ .
Đặt $ \{ X, Y \}=SQ \cap \odot (O) $ và $ \{ U, V \}=TS \cap \odot (O) $ .

Vì $ SQ $ là đường đối cực của $ T $ đối với $ \odot(O) $ ,
nên $ P(T', S'; U, V)=(T, S; U, V)=-1 $ ,
kết hợp với $ \angle UPV=90^{\circ} $ suy ra $ \angle BPQ=\angle SPC $ . ... $ ( \star ) $
vì $ \angle XPB=\angle CPY $ ( $ \because XY \parallel BC $ ) ,
kết hợp với $ (\star) $ ta có $ \angle XPQ=\angle SPY $ ,
vì thế theo bổ đề trên $ \odot (PQS) $ tiếp xúc $ \odot (O) $ tại $ P $ .

Thứ Ba, 25 tháng 10, 2016

Mối liên hệ giữa điểm Fermat và điểm đẳng động

• Nhắc lại điểm Fermat :

Cho tam giác ABC. Dựng theo hướng ngoài 3 tam giác đều ABD, ACE, BCG. Ba đường

tròn (ABD),(ACE),(BCG) đồng quy tại điểm F gọi là điểm Fermat thứ nhất của tam giác

ABC

Nếu dựng theo hướng trong thì F gọi là điểm Fermat thứ hai của tam giác ABC


Khái niệm về hai điểm liên hợp đẳng giác: Cho điểm M bên trong tam giác ABC. Khi

đó các đường thẳng đối xứng của các đường thẳng AM.BM, CM qua tia phân giác đồng

quy tại M'

. Điểm M' được gọi là điểm liên hợp đẳng giác của điểm M trong tam giác ABC

Ngoài ra: $\angle BMC+ \angle BM'C=(180^o- \angle MBC -\angle MCB)+(180^o -\angle M'BC- \angle M'CB) $
$ =(180^o -\angle M'BA -\angle M'CA )+(180^o- \angle M'BC -\angle M'CB) \\ =360-\angle B- \angle C=180^o + \angle A$

Ta có định lý sau: Điểm đẳng động và điểm Fermat là hai điểm liên hợp đẳng giác

Gọi LMN là tam giác đều thủy túc của điểm đẳng động thứ nhất J. Do các tứ giác

JMAN, JNBL, JLCN nội tiếp được nên ta có : $\angle BJC= \angle BJL +\angle LJC =\angle BNL + \angle LMC =\\ 180 - ( \angle LNJ + \angle JNA ) +180^o - \angle LMJ -\angle JMA =180^o- ( \angle LNJ + \angle LMJ) \\ =60^o + \angle JNM + \angle JMN =60^o + \angle JAM + \angle JAN =\angle BAC +60^o$

Mà $ \angle BFC =120^o$ nên : $\angle BFC + \angle BJC =180 ^o + \angle A $

Chứng tỏ F liên hợp đẳng giác của J

Thứ Hai, 11 tháng 7, 2016

Kết hợp giữa phép nghịch đảo và định lý Miquel

Bài 1: Cho tam giác ABC, đường tròn (K) qua B, C cắt AC, AB tại E, F. BE cắt CF tại H. Gọi Q là tâm đường tròn (HEF), L là tâm đường tròn KBC. Chứng minh rằng Q, K, L thẳng hàng.

Lời giải



Gọi S là giao của (ABE) và (ACF) theo định lý Miquel ta có S thuộc (BFH) và (HEC). Suy ra:

∠BSC=360°-∠BSH-∠HSC=∠BFC+∠BEC=∠BKC Suy ra tứ giác BSKC nội tiếp.

Xét phép nghịch đảo tâm A đối với (K), biến:

F thành B

E thành C
Suy ra EB thành (ABE), CF thành (ACF)

Nên biến H là giao điểm EB và FC thành S là giao điểm (ABE), (ACF)

Nên phép vị tự này biến (HEF) thành (BSC) nên tồn tại phép vị tự tâm A tỉ số k biến Q thành L.

Vậy A, Q, L thẳng hàng

Bài 2: (tiếng anh) Let $\triangle ABC$. A circle passes through $B,C$ intersects $AC,AB$ at $E,F$. The lines passes through $E,F$ and perpendicular to $AC,AB$ intersect together at $O. M,N$ lies on $EO,FO$,respectively. Draw $CQ\perp AM,BP\perp AN. BP$ and $AM$ intersects together at $I.MB$ intersect $NC$ at $K$.
Prove that $O,I,K$ are collinear.


Solution

Lemma: Let $ABCD$ is a quadrilateral. $AB$ cuts $CD$ at $G$; $AD$ cuts $BC$ at $K$. Then three circles with diameter $AC,BD,GK$ have the same radical axis.
Proof

Let $H,H'$ are the orthocenters of $\triangle GAD$ and $\triangle KCD$ respectively. Suppose that $GH,AH,DH$ cut $AD,GD,GA$ at $P,Q,R$ respectively. We have $HG.HP=HA.HQ=HD.HR$ so $H$ is on the radical axis of three circles with diameter $AC,BD,GK$. Similarly, we have $H'$ is on the radical axis of three circles with diameter $AC,BD,GK$, too. Hence, $HH'$ is the radical axis of three circles with diameter $AC,BD,GK$ so three cicles with diameter $AC,BD,GK$ have the same radical axis.
Back to this problem Let $X,Y,Z$ are the midpoints of $AO,AI,AK$ respectively. $BC$ cuts $MN$ at $G$. $H$ lies on $AK$ such that $GH \perp AK$. We have $AF.AB=AE.AC$ so $A$ lies on the radical axis of the circles with diameter $BN,CM$. According this lemma, we have $AH.AK=AF.AB=AE.AC$. The inversion center $A$, radius $AF.AB$ : $(X;XA) \mapsto BC; (Y;YA) \mapsto MN; (Z,ZA) \mapsto$ the line passing $H$ and perpendicular $AK$. But $BC, MN$ and the line passing $H$ and perpendicular $AK$ are concurrent at $G$. So $(X;XA), (Y;YA), (Z;ZA)$ have the same radical axis $\Longrightarrow$ $X,Y,Z$ are collinear. Hence $O,I,K$ are collinear.

Bài 3: Cho tam giác ABC. Đường tròn (O) đi qua B, C cắt AC, AB tại E, F. BE cắt CF tại D. H là hình chiếu của O trên AD. K, L là tâm (AFC) và (AEB). I là giao điểm khác H của (KHF) và (LHE). CMR: AI đi qua trung điểm BC.
Lời giải (Huỳnh Bách Khoa)
Lưu ý thêm:
Ta cần bổ đề sau: Gọi H là giao của (BDF) và (DEC). Thì OH vuông DH. Ta có thể gọi M, N là trung điểm FC, EB. Sau đó dùng vị tự quay để suy ra OHMND đồng viên đường tròn đường kính OD. (China 1992)

Và một số sai sót: M thuộc (LEH) do  ∠MLH=∠HEC

Phép gọi T là đối xứng D qua trung điểm BC thường hay gặp để tạo ra đường đẳng giác góc A với AH
Và còn ∠DHN=∠NAH=∠DXN
Về phần phép nghịch đảo là phương tích AE.AC, biến E thành C, F thành B. Thay điểm G thành D. Do I là giao của (MEH) và (NHF) nên biến thành Z là giao của (BDX) và (CDY)


Bài toán mở rộng về đường tròn chín điểm ( Tiếng Anh)

Let $ABC$ be a triangle with circumcircle $(O)$. $(K)$ is a circle passing through $B,C$. $(K)$ cuts $CA,AB$ again at $E,F$. $BE$ cuts $CF$ at $H_K$.

a) Prove that $H_KK$ and $AO$ intersect on $(O)$.

b) $O_K$ is isogonal conjugate of $H_K$ with respect to triangle $ABC$. Prove that $O_K$ lies on $OK$.

c) Let $L,N$ be the points on $CA,AB$, resp such that $O_KL\parallel BE, O_KN\parallel CF$. Prove that $LN\parallel BC$.

d) The line passing through $N$ parallel to $BE$ cuts the line passing through $L$ parallel to $CF$ at $P$. Prove that $P$ lies on $AH_K$.

e) $Q,R$ lie on $BE,CF$, resp such that $PQ\parallel AB,PR\parallel AC$. Prove that $QR\parallel BC$.

f) Prove that $NQ,LR$ and $AH_K$ are concurrent.

g) $D$ is projection of $K$ on $AH_K$. Prove that $DK,EF,BC$ are concurrent.

h) Prove that $KN\perp BE, KL\perp CF$.

i) Prove that nine points $D,E,F;P,Q,R;K,L,N$ lie on a circle $(N_K)$.

j) Prove that $N_K$ is midpoint of $PK$ and $KN_K$ is parallel to $AO$.

k) Prove that $H_K,N_K,O$ are collinear.

When $K \equiv M$ midpoint of $BC$, we get all properities of Nine-point circle.

Solution:

a, g) Let $S \equiv EF \cap BC.$ Then $AS$ is the polar of $H_K$ WRT $(K)$ and $AH_K$ is the polar of $S$ WRT $(K)$ $\Longrightarrow$ $KH_K$ is perpendicular to $AS$ through $H$ and $AH_K$ is perpendicular to $KS$ through $D.$ Hence $SH \cdot SA=SD \cdot SK=SB \cdot SC$ $\Longrightarrow$ $H \in (O).$ Since $\angle AHH_K=90^{\circ},$ then $KH_K$ and $AO$ meet on $(O).$

b, c) $\angle O_KBC=\angle H_KBF=\angle H_KCE=\angle O_KCB$ $\Longrightarrow$ $O_K$ is on perpendicular bisector $OK$ of $\overline{BC}.$ $\angle BFC=\angle BNO_K=\angle BKO_K$ (mod 180) $\Longrightarrow$ $N,B,K,O_K$ are concyclic $\Longrightarrow$ $\angle BNK=\angle BO_KK.$ But $\angle BO_KK=90^{\circ}-\angle FBE=\angle FEK$ $\Longrightarrow$ $\angle BNK=\angle FEK,$ i.e. $N$ lies on circumcircle $(N_K)$ of $DKEF.$ Similarly, $L \in (N_K).$ Thus, $LN$ is antiparallel to $EF$ WRT $AE,AF$ $\Longrightarrow$ $LN \parallel BC.$

d, f)$\triangle PLN$ and $\triangle H_KCB,$ with parallel sides, are homothetic with center $A$ $\Longrightarrow$ $A,P,H_K$ are collinear. Likewise, $\triangle ANL$ and $\triangle PQR,$ with parallel sides, are homothetic with center $AP \cap NQ \cap LR,$ i.e. $AH_K,NQ,LR$ concur.

i) $\angle NKL=\angle NBO_K+\angle LCO_K=CBH_K+\angle BCH_K=\angle NPL$ (mod 180) $\Longrightarrow$ $P \in (N_K).$ Further, $P$ is the midpoint of the arc $EF$ of $(N_K),$ because $\angle PFK=\angle PDK=90^{\circ},$ i.e. $KP$ is perpendicular bisector of  $\overline{EF}.$ Now, since $\angle PQE=\angle FBE=\angle PKE,$ it follows that $Q \in (N_K).$ Similarly, $R \in (N_K).$

h, j) $D,E,F,P,Q,R,K,L,N$ lie then on a circle $(N_K)$ with diameter $KP$ perpendicular to $EF,$ i.e. $KP \parallel AO.$ Thus, $KN$ is perpendicular to $PN \parallel BE$ and $KL$ is perpendicular to $PL \parallel CF.$

e, k) $\triangle PQR \cup (N_K)$ and  $\triangle ABC \cup (O)$ are homothetic with center $H_K \equiv AP \cap BQ \cap CR,$ thus $QR \parallel BC$ and $H_K,O,N_K$ are collinear.

Thứ Hai, 27 tháng 6, 2016

Một số tính chất về tam giác ABC có AB+BC=3AC.

Tính chất 1 (IMO shortlist 2005): .Cho tam giác ABC có AB+BC=3AC.Đường tròn (I) nội tiếp tam giác tiếp xúc với AB,AC tại D,E.Lấy K,L là điểm đối xứng của D,E qua I.Khi đó ALKC nội tiếp.

Chứng minh


Gọi H là giao điểm của CK và AB,T là giao điểm của AL và BC.

Ta có các tính chất cơ bản sau:

AH=BD=AC và CT=BE=AC.

$\angle KCA=90^o-\frac{\angle A}{2}=\angle AID$ (Do tam giác AHC cân)

Suy ra tứ giác AKIC nội tiếp

Tương tự tứ giác ALIC nội tiếp.

Hay 5 điểm A, L, K, I, C cùng thuộc đường tròn.

Vậy ta có đpcm.

Tính chất 2 phát biểu: Cho tam giác ABC đường tròn nội tiếp (I), đường tròn bàng tiếp góc A, B, C tương ứng tiếp xúc BC, CA, AB tại M, N, P. Ta có AM, BN, CP đồng quy tại một điểm khi AB+BC=3AC

Ta chứng minh một bổ đề:

Cho tam giác ABC nội tiếp (O), có đường kính AE, BF. Khi đó đường thẳng qua D song song BC và đường thẳng qua E song song AB cắt nhau tại một điểm thuộc (O).

Chứng minh: Gọi hai đường thẳng đó cắt nhau tại F. Do DF song song BC nên DF vuông BD, tương tự EF vuông EB. Vậy tứ giác FDBE nội tiếp hay F thuộc (O).

Trở lại bài toán. ta sẽ lấy hình 1, và dễ thấy M, N, P trong tính chất 2 là E, F, D trong hình trên.

Ta có AL song song EF do có hai tam giác ACT và tam giác CEF cùng cân tại C.

Tương tự CK song song DF. Vậy theo bổ đề trên ta có AL, CK cắt nhau tại 1 điểm thuộc (I).

Ngoài ra ta có bài toán sau: (USA MO 2001)Cho ABC có (I) là đường tròn nội tiếp tiếp xúc với BC,CA lần lượt tại $ D_1, E_1, D_2, E_2,$ là các điểm nằm trên BC,CA sao cho :$C D_2 =B D_1$ và $C E_2 =A E_1$ .Gọi P là giao điểm của $A D_2$ và $B E_2$ .Đường tròn (I) cắt $A D_2$ tại  điểm,Q gần A.(Q là giao của $A D_2$ và (I)).Chứng minh :$AQ= D_2 P.$

Lời giải:

Khó có thể chứng minh trực tiếp được nên nếu ta đưa về tỉ số thì sẽ dễ chứng minh hơn. Mà ta lại có:

$\frac{AQ}{AD_2}=\frac{r}{r_a}$ (r là tâm nội tiếp, $r_a $ là tâm bàng tiếp )

Ta sẽ chứng minh : $\frac{D_2P}{AD_2}=\frac{r}{r_a}$

Vì B, P, $E_2$ thẳng hàng.

Theo menelaus cho tam giác $AD_2C$ thì:

$\frac{D_2P}{AP}=\frac{BD_2.CD_1}{BC.E_2A}=\frac{p-a}{a}$
Suy ra:
$\frac{D_2P}{AD_2}=\frac{p-a}{a}=\frac{r}{r_a}$

Vậy ta có đpcm.

Áp dụng bài toán trên thì nếu cho:

 P là giao của AT và CH. Thì :HP=CK và AL=PT.

Do đó ta sẽ có: tam giác AKC bằng APH  và tam giác CTP bằng tam giác CAL

Từ đây có thể suy ra tính chấtt 1 dễ dàng: $\angle ALC=\angle CPT=\angle APH=\angle AKC$.

Ngoài ra: AK và AT là hai đường đẳng giác trong góc A và CL và CP là hai đường đẳng giác trong góc C. Suy ra L, K là hai điểm đẳng giác của tam giác ABC

Và I là trực tâm APC. Kết hợp với tính chất 2 là P thuộc (I) ta suy ra P đối xứng F qua I.


Thứ Bảy, 25 tháng 6, 2016

Từ một bổ đề cho đến bài thi ELMO 2016

Ta có bổ đề sau:

Bổ đề . $\triangle ABC$, $M$, $N$ thuộc $BC$ thì $(AMN)$ tiếp xúc $(ABC)$ khi và chỉ khi $AM$, $AN$ đẳng giác với góc $A$.

Chứng minh bổ đề: $O$, $I$ là tâm của $(ABC)$ và $(AMN)$, $AH$ là đường cao của $\triangle ABC$ thì đương nhiên $AH$ cũng là đường cao của $\triangle AMN$. $AH$, $AO$ đẳng giác với $\angle (AB,AC)$; $AH$, $AI$ đẳng giác với $\angle (AM,AN)$ nên $(A,O,I)$ thẳng hàng khi và chỉ khi $\angle(AB,AC)$ và $\angle (AM,AN)$ có chung phân giác - tức là $AM$, $AN$ đẳng giác.

Đề bài. Trong $\triangle ABC$ với $AB \neq AC$, cho đường tròn nội tiếp của nó tiếp xúc với $BC, CA$ và $AB$ tại $D, E$ và $F$, theo đúng thứ tự. Phân giác trong của $\angle BAC$ cắt đường $DE$ và $DF$ tại $X$ và $Y$, theo thứ tự. Gọi $S, T$ là các điểm khác nhau trên cạnh $BC$ sao cho $\angle XSY = \angle XTY = 90^{\circ}$. Cuối cùng, gọi $\gamma$ là đường tròn ngoại tiếp $\triangle AST$.
Chứng minh rằng $\gamma$ tiếp xúc với $\odot (ABC)$
Chứng minh rằng $\gamma$ và đường tròn nội tiếp của $\triangle ABC$ tiếp xúc nhau.

Lời giải:




câu a)

Để ý $D(BA,EF)=-1\implies D(ZA,YX)=-1$ mà $\angle YSX=\angle YTX=90^\circ\implies SX,TX$ lần lượt là phân giác $\angle ZTA,\angle ZSA\implies AI$ là phân giác $\angle SAT\implies AS,AT$ đẳng giác trong $A\implies \gamma $tiếp xúc $(O)$.


Câu b) Do $DE$ đi qua tâm nội tiếp tam giác $AST,(I)$ tiếp xúc với $AC,TC$ tại $E,D$ nên theo bổ đề Sayawama thì $(I)$ tiếp xúc $\gamma$

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...