Hiển thị các bài đăng có nhãn phần lẻ. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn phần lẻ. Hiển thị tất cả bài đăng

Thứ Hai, 15 tháng 8, 2016

Định lý Dirichle

(Định lí Dirichle) Cho $\alpha$ là một số vô tỉ. Chứng minh rằng, tồn tại vô hạn các số nguyên p,q với q>0 sao cho:

$|\alpha -\frac{p}{q}| <\frac{1}{q^2}$

Lời giải:

Trước hết ta chứng minh với mọi $ N \ge q$ luôn tồn tại p,q thỏa mãn:

$|\alpha -\frac{p}{q}| <\frac{1}{qN}$

Thật vậy ta chia các [0;1) thành các khoảng $[\frac{k-1}{N};\frac{k}{N})(k =\overline{1,N})$

Thì theo nguyên lý Dirichle sẽ tồn tại hai số { $\alpha q_i$ } và { $\alpha q_j$ } thuộc vào một đoạn (  q= 0,1,..N)

$\Rightarrow \left | \begin{Bmatrix}
\alpha q_i
\end{Bmatrix}- \begin{Bmatrix}
\alpha q_j
\end{Bmatrix} \right |<\frac{1}{N(q_i-q_j)}\\\Rightarrow \left | \alpha -\frac{\begin{bmatrix}
\alpha q_i
\end{bmatrix}-\begin{bmatrix}
\alpha q_j
\end{bmatrix}}{q_i-q_j} \right | <\frac{1}{N(q_i-q_j)}$ Điều phải chứng minh.

Ta giả sử chỉ có hữu hạn các số p,q thỏa mãn đề bài Kí hiệu tập này là X.

Khi đó sẽ tồn tại M sao cho $|\alpha -\frac{p}{q}| >M$

Chọn N sao cho $\frac{1}{M}<N$ Khi đó tồn tại các số nguyên dương $p_i, q_i$ sao cho
$|\alpha -\frac{p_i}{q_i}| <\frac{1}{q_iN} <\frac{1}{q_iN}<\frac{1}{q_i^2}$

Suy ra $p_i,q_i$ thuộc X, nhưng $M >\frac{1}{q_iN} $ (mâu thuẫn)

Vậy ta có điều phải chứng minh.

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...