Hiển thị các bài đăng có nhãn tồn tại. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn tồn tại. Hiển thị tất cả bài đăng

Thứ Hai, 7 tháng 11, 2016

Dùng bậc và hệ số cao nhất trong bài toán đa thức.

Bài toán (Hà Nam 2016):

Cho $P,Q,R$ là $3$ đa thức hệ số thực thỏa mãn: $P(Q(x))+P(R(x))=c$ $\forall x\in\mathbb{R}$ với $c=const\in\mathbb{R}$

CMR: $P(x)\equiv const$ hoặc $[Q(x)+R(x)]\equiv const$


Lời giải:


Đặt $deg P(x)=p$ và không mất tính tổng quát giả sử $deg Q(x)=q \ge r=degR(x)$. Nếu $P(x)\equiv const$ hoặc $Q(x)\equiv const$ thì khi đó $R(x)\equiv const$ nên hai trường hợp này là hiển nhiên. Ta xét $ p,q >0$, $r \ge 0$

Đặt $C_k (f(x))$ là hệ số của $x^k$ trong đa thức $f(x)$, vì thế $C_{\deg f(x)} (f(x)) \neq 0$ là hệ số cao nhất của $f(x)$. Đặt $a = C_{\deg P(x)} (P(x))$, $b = C_{\deg Q(x)} (Q(x))$, $c = C_{\deg R(x)} (R(x))$.
Nếu $q>r$, Khi đó $C_{pq} (P(Q(x)) + P(R(x))) = ab^p \neq 0$, Vô lí. Vì thế ta phải có $q=r=m$, $\Rightarrow$ $C_{pm} (P(Q(x)) + P(R(x))) = a(b^p +c^p)\neq 0$, Theo điều kiện giả thiết thì $b^p + c^p = 0$, dẫn tới $p$ lẻ và $c=-b$.


Xét $a(Q(x)^p + R(x)^p) = a(Q(x)+R(x)) S(x)$, Trong đó $ S(x) = Q(x)^{p-1} - Q(x)^{p-2}R(x) + \cdots - Q(x)R(x)^{p-2} + R(x)^{p-1}$. Ta có $C_{(p-1)m}(S(x)) = b^{p-1} - b^{p-2}(-b) + \cdots - b(-b)^{p-2} + (-b)^{p-1} = pb^{p-1} \neq 0$, nên $\deg S(x) \geq (p-1)m$ (Thực ra là bằng luôn).


Mặt khác nếu đặt $T(x) = P(Q(x)) + P(R(x)) - a(Q(x)^p + R(x)^p)$ ta có $\deg T(x) \leq (p-1)m$. Giả sử ngược lại $Q(x)+R(x)$ không là hằng số, $\Rightarrow$ $\deg(Q(x)+R(x)) \geq 1$, Ta phải có $\deg(a(Q(x)^p + R(x)^p)) = \deg(a(Q(x)+R(x)) S(x)) \geq 1 + (p-1)m$, và vì thế $\deg(P(Q(x)) + P(R(x))) = \deg(a(Q(x)^p + R(x)^p) + T(x)) \geq 1+(p-1)m >0$, Mâu thuẫn.


Vậy ta có đpcm.
Ps: Nếu tồn tại $Q,R$ mà $Q(x) + R(x) = C$ là hằng số, ta vẫn có thể tìm đa thức $P$ khác hằng bậc$ p$ lẻ bất kì, để $P(Q(x)) + P(R(x)) $ là hằng số. Chỉ cần lấy $P(x) = (2x-C)^p + k/2$


Thứ Hai, 30 tháng 5, 2016

Dùng nguyên lí Dirichlet để giải bài toán tổ hợp - Phần 2

Bài toán: Tìm số tự nhiên n lớn nhát sao cho tồn tại n số nguyên không âm $x_1,x_2,..x_n$ không đồng thời bằng 0, sao cho với mọi $\varepsilon _1, \varepsilon _2,..\varepsilon _n$ $\in$ {-1;0;1} không đồng thời bằng 0 sao cho $n^3$ không chia hết cho $\varepsilon _1x_1+\varepsilon _2x_2+..\varepsilon _nx_n$

Lời giải.

Với n=9 ta chọn $1,2,2^2,..2^8$

Khi đó: $| \varepsilon _1+..+2^9\varepsilon _9|\le 1+2+..2^8<9^3$

Nếu $n\ge10$ không mất tính tổng quát, giả sử $n=10$ khi đó số tập con của S={$x_1,x_2,..z_10$} là $2^{10}$ và vì $2^{10}>10^3$ nên theo nguyên lí Dirichlet tồn tại hai tập A và B là tập con của S sao cho tổng các phần tử của A có cùng số dư với tổng các phần tử của B.

Khi đó đặt $\varepsilon _i=1$ nếu $x_i$ thuộc A nhưng không thuộc B, $\varepsilon _i=-1$ nếu $x_i$ thuôc B nhưng không thuộc A, bằng 0 trong trường hợp còn lại khi đó:

$\sum \varepsilon _ix_i \vdots n^3$

Chủ Nhật, 29 tháng 5, 2016

Dùng nguyên lí Dirichlet để giải bài toán tổ hợp-Phần 1

Bài toán: Gọi $n_1<n_2<..<n_{2000}<10^{100}$ là một số nguyên dương. Chứng minh rằng có thể tìm được hai tập A và B khác nhau không rỗng là tập con của {$n_1,n_2,..n_{2000}$} thỏa cấc điều kiện:

i) $|A|=|B|$

ii) $\sum_{x\in A}x=\sum_{x\in B}x$

iii) $\sum_{x\in A}x^2=\sum_{x\in B}x^2$

Lời giải
Lưu ý: $\binom{2000}{1000}$ là số hạng lớn nhất trong các số hạng $\binom{2000}{k}$.

Gọi S là tất cả tập con của tập {$n_1,n_2,..n_{2000}$} sao cho S có 1000 phần tử, ta có:

$0< \sum_{x\in S}x<1000.10^{100}$

$0< \sum_{x\in S}x^2<1000.10^{200}$

Vậy số các cặp $( \sum_{x\in S}x, \sum_{x\in S}x^2)$ ít hơn $10^{306}$

Mặt khác:

Số tập hợp chứa 1000 phần tử là: $\binom{2000}{1000}>\frac{\sum_{k=0}^{2000}\binom{2000}{k}}{2001}> \frac{2^{2000}}{2001}> \frac{10^{600}}{2001}>10^{306}$ 

Nên theo nguyên lí Dirichlet tồn tại hai tập hợp C và D chứa 1000 phần tử sao cho $( \sum_{x\in C}x, \sum_{x\in C}x^2)=( \sum_{x\in D}x, \sum_{x\in D}x^2)$

Loại bỏ các phần tử chung của C và D ta thu được hai tập A và B thỏa mãn điều kiện đề bài.

Thứ Hai, 2 tháng 5, 2016

Hai bài số học của Mỹ và Trung Quốc.

1/ (Mỹ) Chứng minh rằng với mỗi số nguyên $n \ge 2$ đều tồn tại một tập S gồm n số nguyên thoả mãn $(a-b)^2$ là ước của ab với mọi a,b thuộc S phân biệt.
2/ ( Trung Quốc) Tìm số nguyên không âm K nhỏ nhất sao cho với mọi tập con K- phần tử của tập hợp {1,2,..50} tồn tại hai phần tử a,b phân biệt mà a+b là ước của ab

Giải

1/ Ta chứng minh bằng quy nạp rằng với mỗi số nguyên dương n đều tồn tại một tập hợp $S_n$ gồm n phần tử thoả mãn điều kiện đã cho.

Với n=2 chọn $S_2$={0,1}. Giả sử khẳng định đã đúng đến n. Ta chứng minh khẳng định đúng với n+1. Gọi L là BCNN của các số khác 0 có dạng $(a-b)^2$ và ab trong đó $a,b \in S_n$. Đặt:

$S_{n+1}$={$s+L: s \in S_n$} $\cup ${0}

Khi đó, vì $L \ge 0$ nên $S_{n+1}$ chứ n+1 phần tử phân biệt không âm. Ta chứng minh tập $S_{n+1}$ thoả mãn.

Lấy u,v, bất kì. Nếu trong u,v có một số bằng 0 thì hiển nhiên. Nếu u,v đều khác 0 thì tồn tại hai phần tử a,b thuộc S sao cho
$u=L+a, v=L+b.$

Từ các chọn ta có $uv \vdots (u-v)^2$. Vậy ta đã chứng minh với n+1. Theo nguyên lí quy nạp ta có đpcm
2/ Giá trị nhỏ nhất của k=39. Cho a,b thuộc S thoả mãn a+b chia hết ab. Đặt $c=(a,b), a=ca_1, b=cb_1$ thì $(a_1,b_1)=1$ Khi đó $c(a_1+b_1)$ chia hết $c^2a_1b_1$ Suy ra $a_1+b_1$ chia hết $ca_1b_1$. Vì $a_1, b_1$ không có ước chung nên $a_1+b_1$ không chia hết $a_1$ và $b_1$. nên c chia hết cho $a_1+b_1$.(1)

Vì S là tập con {1,..,50}, ta có $a+b \le 99$, vì thế $c(a_1+b_1) \le 99$, từ (1) suy ra $a_1+b_1 \le 9$ mặt khác, $a_1+b_1 \ge 3$ từ đây ta tìm được các cặp (a,b):



(6, 3); (12, 6); (18, 9); (24, 12); (30, 15); (36, 18); (42, 21); (48, 24);

(12, 4); (24, 8); (36, 12); (48, 16)

(20, 5), (40, 10), (15, 10), (30, 20), (45, 30)

(30, 6)

(42, 7), (35, 14), (28, 21)

(40, 24)

(45, 36)


Có 23 cặp, 24 số. Còn lại 26 số. Suy ra K>26. Ta cần tìm giá trị nhỏ nhất của K-26 sao cho ta sẽ chọn được hai số trong 24 số thuộc 1 cặp. Ta tìm được giá trị 13 là nhỏ nhất .Thật vậy, giả sử nhỏ hơn 12 thì ta chọn 26 số đó với các số sau đây 3,4,5,7,8,9,10,14,16,28,30,36.


Vậy K nhỏ nhất là 39.

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...