Nghiệm phức của đa thức với hệ số nguyên, trong nhiều trường hợp là chìa khóa để chứng minh tính bất khả quy trên (Z, và Q) của đa thức đó. Chúng ta tìm hiểu các lý luận mẫu trong vấn đề này thông qua các ví dụ sau:
Bài 1: Cho P(x) và Q(x) là 2 đa thức với hệ số nguyên thỏa mãn điều kiện:
$\begin{bmatrix}
P(x^3)+xQ(x^3)
\end{bmatrix}\vdots (x^2+x+1)$ Gọi d là ước chung lớn nhất của P(2007) và Q(2007). Chứng minh rằng $d \vdots 2006$
Lời giải:
Ta sẽ chứng minh rằng P(1)=Q(1)=0
Ta có: $\varepsilon =\frac{-1}{2}+i\frac{\sqrt{3}}{2}$ là nghiệm của đa thức $x^2+x+1$
Suy ra: $\varepsilon^3=1$
Từ điều kiện lần lượt cho $x=-\varepsilon, -\varepsilon^2$ vào ta được
$\left\{\begin{matrix}
P(1)+\varepsilon Q(1)=0 (1)& \\
P(1)+\varepsilon^2Q(1)=0 (2)&
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
-\varepsilon P(1)-\varepsilon^2 Q(1)=0 (3)& \\
- \varepsilon^2 P(1)-\varepsilon Q(1)=0 (4)&
\end{matrix}\right.$
Cộng (1), (2), (3), (4) và sử dụng $\varepsilon^2+\varepsilon+1=0$ ta được $3P(1)=0$
Ta chỉ còn chứng minh Q(1)=0, mà từ (1), (2):
$\left\{\begin{matrix}
P(1)+\varepsilon Q(1)=0 & \\
P(1)+\varepsilon^2Q(1)=0 &
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
\overline{\varepsilon} P(1)+Q(1)=0 & \\
\overline{\varepsilon} P(1)+ Q(1)=0&
\end{matrix}\right.$ Đến đây làm tương tự như P(1) ta có điều phải chứng minh.
Bài 2 (USA MO): Cho P(x), Q(x), R(x) là các đa thức sao cho:
$\begin{bmatrix}
P(x^5)+xQ(x^5)+x^2R(x^5)
\end{bmatrix} \vdots(x^4+x^3+x^2+x+1)$
Chứng minh rằng P(x) chia hết cho x-1.
Giải: Đặt $w=e^{\frac{2\pi i}{5}}$ thì $w^5=1$, thay x lần lượt bằng $w, w^2, w^3, w^4$ ta được các phương trình:
$\left\{\begin{matrix}
P(1)+wQ(1)+w^2R(1)=0\\
P(1)+w^2Q(1)+w^4R(1)=0\\
P(1)+w^3Q(1)+w^6R(1)=0\\
P(1)+w^4Q(1)+w^8R(1)=0
\end{matrix}\right.$
Nhân các phương trình từ 1 đến 4 lần lượt với $-w, -w^2, -w^3, -w^4$ ta được:
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Hiển thị các bài đăng có nhãn căn nguyên thủy. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn căn nguyên thủy. Hiển thị tất cả bài đăng
Thứ Bảy, 8 tháng 10, 2016
Đăng ký:
Bài đăng (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho $x^2 \equiv a (mod n)$ Ta cũng có th...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...