Hiển thị các bài đăng có nhãn ước chung lớn nhất. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn ước chung lớn nhất. Hiển thị tất cả bài đăng

Thứ Hai, 6 tháng 2, 2017

Tính chất của dãy số Fibonacci

1) $(F_n,F_{n+1})=1$

2) Nếu $n |m $ thì $F_n |F_m$
Ta chỉ cần chứng minh tính chất sau:
$F_{m+n}=F_{m-1}F_{n+1}+F_{m}.F_{n}$
Quy nạp theo $n$, với $n=1$ đúng
Giả sử đúng với $n=k$ khi đó với $n=k+1$ thì:
$F_{m+k+1}=F_{m+k}+F_{m+k-1}=(F_{m-1}F_{k+1}+F_{m}.F_{k})+(F_{m-1}_F{k}+F_{m}.F_{k-1})=F_{m-1}F_{k+2}+F_{m}F_{k+1}$
Vậy theo nguyên lí quy nạp ta có điều phải chứng minh.
Cho $m=kn$ thì ta suy ra thêm được một số tính chất sau
3)Nếu $F_n$ chia hết cho $F_m$ thì $n$ chia hết cho $m$ (m>2)
4) $(F_m,F_n)=F_{(m,n)}$
5) $n \ge 5$ và $F_n$ là số nguyên tố thì n cũng là số nguyên tố.
6) $(F_n)$ chứa vô hạn những số nguyên tố đôi một cùng nhau
7) $F_{5n}=5F_nq_n$ $q_n$ không chia hết cho 5.

Chứng minh:

Cách 1:
$F_{5n}=\frac{q_1^{5n}-q_2^{5n}}{\sqrt 5}=F_n(q_1^{4n}+q_1^{3n}q_2^n+(q_1q_2)^2n+q_1^nq_2^{3n}+q_2^{4n})=F_n(L_{4n}+(-1)^nL_{2n}+1)=F_n(L_{2n}^2+(-1)^nL_{2n}-1).$ Vì thế $v_5(F_{5n})=v_5(F_n)+v_5(L_{2n}^2+(-1)^nL_{2n}-1)$.
$L_n^2-5F_n^2=4(-1)^n$
$F_{2n}=F_nL_n$.
Do $n=1$ $L_2^2-L_2-1=5$.
$L_n,F_n$ chu kì 20 mod 5 ($L{n+10}=-L_n\mod 5, F_{n+10}=-F_n\mod 5$. $5|F_n$ khi và chỉ khi $5|n$
nếu $n>1$ $5|F_5|F_{5k}$. Vì thế $5|n$  $L_{2n}^2=4(-1)^n\mod 25$. Vì $10|n$ $L_{2n}=\pm 2\mod 25$.
$L_{2n}^2+(-1)^nL_{2n}-1=4+2-1=5\mod 25$. Vậy $v_5(F_{5n})=v_5(F_n)+1\to v_5(F_n)=v_5(n).$ (Đpcm)

Cách 2:



Dùng cách tính chất ở trên, nếu $a|b$ thì $F_a|F_b$ và , $(F_a,F_b)=F_{(a,b)}$.

Đặt $n=5^p \cdot q$ Với $(5,q)=1$. thì $v_5(n)=p$. thấy rằng $(F_{5^k \cdot m}, F_{5^k}) = F_{5^k}$ . Hiển nhiên $5^k|F_{5^k}$.và $5^{k+1}$ không là ước của ${F_{5^k \cdot m}}$ vì nó sẽ dẫn đến $5|m$ mâu thuẫn. Vậy $v_5(F_{5^k \cdot m})=k$ . Đpcm $\Box$




8) $F_n \vdots 5^k$ khi và chỉ khi $n \vdots k$
9) $F_n$ có tận cùng là 0 khi và chỉ khi $n \vdots 15$

10) $F_n$ có tận cùng là hai chữ số 0 khi và chỉ khi $n \vdots 150$


Chủ Nhật, 9 tháng 10, 2016

Bổ đề bất đẳng thức số học và đề USA MO 1995

Ta có một bổ đề bất đẳng thức số học dùng để đánh giá bội chung nhỏ nhất như sau:
Với mọi số nguyên dương n tồn tại một số $c_n >0$ sao cho:

$lcm(m,m+1,m+2,..m+n)>c_nm(m+1)(m+2)..(m+n)$ (ký hiệu lcm, gcd lần lượt là bội chung nhỏ nhỏ và ước chung lớn nhất)

Chứng minh:

Ta có:

$lcm(m,m+1,m+2,..m+n)=lcm(lcm(m,m+1,..m+n-1),m+n)\\=\frac{lcm(m,m+1,..m+n-1)(m+n)}{gcd(lcm(m,m+1,..m+n-1),m+n)} \\ \ge \frac{lcm(m,m+1,..m+n-1)(m+n)}{gcd(m(m+1)(m+2)..(m+n-1),m+n)}\\ \geq \frac{lcm(m,m+1,..m+n-1)(m+n)}{n!}$

Bằng quy nạp ta chứng minh được:
$lcm(m,m+1,m+2,..m+n)\ge\frac{m(m+1)(m+2)..(m+n)}{n!(n-1)!..1!}$

Như vậy bổ đề được chứng minh.
Ta xét bài toán sau:

(USA MO 1995) Cho dãy số nguyên $(a_n)_{n \ge 0}$ thỏa mãn điều kiện sau:

i) $m-n | a_m -a_n$

ii) tồn tại đa thức f(x) sao cho |a_n| \le $f(n)$ với mọi $n \ge 0$

Chứng minh rằng tồn tại đa thức g(n) sao cho $g(n)=a_n$ với mọi $n \ge 0$

Lời giải:



Giả sử $P$ có bậc $d$. Đặt $Q$ là đa thức bậc cao nhất $d$ với $Q(x)=q_x$ cho $0\leq x\leq d$. Vì $q_x$ là những số nguyên, $Q$ là đa thức hệ số hữu tỉ và tồn tại $k$ để $kQ$ có hệ số nguyên. Vì thế $m-n|kQ(m)-kQ(n)$ với mọi $m,n\in \mathbb N_0$.




Ta sẽ chứng minh rằng $Q$ là đa thức cần tìm


Cho $x>n$ Ta có

$ kq_x \equiv kq_m\pmod{x-m}\text{với mọi }m\in[0,d]$

Vì $kQ(x)$ thỏa mãn điều kiện nên $kq_m=kQ(m)$,

$kq_x\equiv kQ(x)\pmod{x-m}\text{ với mọi }m\in [0,d] $
( lưu ý kQ(x) -kQ(m) chia hết x-m)
và vì thế

$ kq_x\equiv kQ(x)\pmod{\text{lcm}(x,x-1,\ldots, x-d)}. \;(1) $

Vì $P(x), Q(x)$ có bậc là $d$, Vì thế với $x$ đủ lớn ( $x>L$) Ta có $\left|Q(x)\pm\frac{x(x-1)\cdots (x-d)}{kd!(d-1)!\cdots 1!}\right|>P(x)$. Vì (1) $kq_x$ phải lớn hơn một bội của $\text{lcm}(x,x-1,\ldots, x-d)$ so với $kQ(x)$; vì thế $q_x$ phải lớn hơn một bội của $\frac{x(x-1)\cdots (x-d)}{kd!(d-1)!\cdots 1!}$ với $Q(x)$, với $x>L$ Ta phải có $q_x=Q(x)$.




Bây giờ với mọi $y$ ta có $kQ(y)\equiv kQ(x)\equiv kq_x \equiv kq_y\pmod{x-y}$ với $x>L$. Vì $x-y$ có thể lớn tùy ý nên ta phải có $Q(y)=q_y$, đpcm

Thứ Hai, 2 tháng 5, 2016

Hai bài số học của Mỹ và Trung Quốc.

1/ (Mỹ) Chứng minh rằng với mỗi số nguyên $n \ge 2$ đều tồn tại một tập S gồm n số nguyên thoả mãn $(a-b)^2$ là ước của ab với mọi a,b thuộc S phân biệt.
2/ ( Trung Quốc) Tìm số nguyên không âm K nhỏ nhất sao cho với mọi tập con K- phần tử của tập hợp {1,2,..50} tồn tại hai phần tử a,b phân biệt mà a+b là ước của ab

Giải

1/ Ta chứng minh bằng quy nạp rằng với mỗi số nguyên dương n đều tồn tại một tập hợp $S_n$ gồm n phần tử thoả mãn điều kiện đã cho.

Với n=2 chọn $S_2$={0,1}. Giả sử khẳng định đã đúng đến n. Ta chứng minh khẳng định đúng với n+1. Gọi L là BCNN của các số khác 0 có dạng $(a-b)^2$ và ab trong đó $a,b \in S_n$. Đặt:

$S_{n+1}$={$s+L: s \in S_n$} $\cup ${0}

Khi đó, vì $L \ge 0$ nên $S_{n+1}$ chứ n+1 phần tử phân biệt không âm. Ta chứng minh tập $S_{n+1}$ thoả mãn.

Lấy u,v, bất kì. Nếu trong u,v có một số bằng 0 thì hiển nhiên. Nếu u,v đều khác 0 thì tồn tại hai phần tử a,b thuộc S sao cho
$u=L+a, v=L+b.$

Từ các chọn ta có $uv \vdots (u-v)^2$. Vậy ta đã chứng minh với n+1. Theo nguyên lí quy nạp ta có đpcm
2/ Giá trị nhỏ nhất của k=39. Cho a,b thuộc S thoả mãn a+b chia hết ab. Đặt $c=(a,b), a=ca_1, b=cb_1$ thì $(a_1,b_1)=1$ Khi đó $c(a_1+b_1)$ chia hết $c^2a_1b_1$ Suy ra $a_1+b_1$ chia hết $ca_1b_1$. Vì $a_1, b_1$ không có ước chung nên $a_1+b_1$ không chia hết $a_1$ và $b_1$. nên c chia hết cho $a_1+b_1$.(1)

Vì S là tập con {1,..,50}, ta có $a+b \le 99$, vì thế $c(a_1+b_1) \le 99$, từ (1) suy ra $a_1+b_1 \le 9$ mặt khác, $a_1+b_1 \ge 3$ từ đây ta tìm được các cặp (a,b):



(6, 3); (12, 6); (18, 9); (24, 12); (30, 15); (36, 18); (42, 21); (48, 24);

(12, 4); (24, 8); (36, 12); (48, 16)

(20, 5), (40, 10), (15, 10), (30, 20), (45, 30)

(30, 6)

(42, 7), (35, 14), (28, 21)

(40, 24)

(45, 36)


Có 23 cặp, 24 số. Còn lại 26 số. Suy ra K>26. Ta cần tìm giá trị nhỏ nhất của K-26 sao cho ta sẽ chọn được hai số trong 24 số thuộc 1 cặp. Ta tìm được giá trị 13 là nhỏ nhất .Thật vậy, giả sử nhỏ hơn 12 thì ta chọn 26 số đó với các số sau đây 3,4,5,7,8,9,10,14,16,28,30,36.


Vậy K nhỏ nhất là 39.

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...