Hiển thị các bài đăng có nhãn phương pháp giải bất đẳng thức. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn phương pháp giải bất đẳng thức. Hiển thị tất cả bài đăng

Thứ Ba, 3 tháng 1, 2017

Bất đẳng thức Canada và thêm một hướng tiếp cận

Ta có bất đẳng thức trong đề thi Canada nổi tiếng sau đây:
Chứng minh rằng:
$a^{2}b+b^{2}c+c^{2}a \leq \frac{4}{27}$ nếu $a+b+c=1$ và a,b,c dương.
Ta có cách giải dồn biến về biên ở đây
Lời giải khác
Nếu $\{ p,q,r \}= \{ a,b,c \}$, $p \geq q \geq r$, thì $pq \geq pr \geq qr$,
$a^{2}b+b^{2}c+c^{2}a =a(ab)+b(bc)+c(ca) \leq p(pq)+q(pr)+r(qr)$
$=q(p^{2}+pr+r^{2}) \leq q(p+r)^{2}= \frac{1}{2}(2q)(p+r)(p+r)$
$\leq \frac{1}{2}(\frac{(2q)+(p+r)+(p+r)}{3})^{3}$
$=\frac{1}{2}(\frac{2}{3})^{3}=\frac{4}{27}$

Dùng ý tưởng này ta có thể chứng minh:
Bài 1: Cho $a+b+c+d=4$ and $a,b,c,d\geq0$.
Chứng minh rằng $a^{2}bc+b^{2}cd+c^{2}da+d^{2}ab\leq4$
Lời giải:
Đặt ${p,q,r,s}={a,b,c,d}$ and $p \geq q \geq r \geq s$. Theo bất đẳng thức hoán vị:
$a^{2}bc+b^{2}cd+c^{2}da+d^{2}ab=a(abc)+b(bcd)+c(cda)+d(dab)$
$\leq p(pqr)+q(pqs)+r(prs)+s(qrs)=(pq+rs)(pr+qs)$
$\leq (\frac{pq+rs+pr+qs}{2})^{2}=\frac{1}{4}((p+s)(q+r))^{2}$
$\leq \frac{1}{4}((\frac{p+q+r+s}{2})^{2})^{2}$
$=4$.

Dấu bằng xảy ra khi và chỉ khi $q=r=1$ và $p+s=2$.  $(a,b,c,d)=(1,1,1,1),(2,1,1,0)$ và các hoán vị

Bài 2: $a,b,c,d,e \ge 0$ Chứng minh: $a^{2}bcd+b^{2}cde+c^{2}dea+d^{2}eab+e^{2}abc \leq 5(\frac{a+b+c+d+e}{5})^{5}$.

Lời giải:

Đặt $\{a,b,c,d,e\}=\{p,q,r,s,t\}$. Không mất tính tổng quát giả sử $p\le q\le r\le s\le t$ Và ta có $pqrs\le prst\le pqst\le pqrt\le qrst$.  Vì thế theo bất đẳng thức hoán vị:


 \begin{eqnarray} &&\text{LHS}=a(abcd)+b(bcde)+c(cdea)+d(deab) \\
&\le& p(pqrs)+q(prst)+r(pqst)+s(pqrt)+t(qrst) \\
&=& qrs(p^2+t^2+3pt)=qrs[(p+t)^2+pt] \\
&\le& \frac{(2q)(2r)(2s)(p+t)(p+t)}{8}+pqrst \\
 &\le& \frac18(\frac{2q+2r+2s+p+t+p+t}{5})^5+(\frac{p+q+r+s+t}{5})^5 \\
&=& 5(\frac{a+b+c+d+e}{5})^5 \end{eqnarray}

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...