Hiển thị các bài đăng có nhãn tâm vị tự. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn tâm vị tự. Hiển thị tất cả bài đăng

Thứ Hai, 11 tháng 7, 2016

Bài toán mở rộng về đường tròn chín điểm ( Tiếng Anh)

Let $ABC$ be a triangle with circumcircle $(O)$. $(K)$ is a circle passing through $B,C$. $(K)$ cuts $CA,AB$ again at $E,F$. $BE$ cuts $CF$ at $H_K$.

a) Prove that $H_KK$ and $AO$ intersect on $(O)$.

b) $O_K$ is isogonal conjugate of $H_K$ with respect to triangle $ABC$. Prove that $O_K$ lies on $OK$.

c) Let $L,N$ be the points on $CA,AB$, resp such that $O_KL\parallel BE, O_KN\parallel CF$. Prove that $LN\parallel BC$.

d) The line passing through $N$ parallel to $BE$ cuts the line passing through $L$ parallel to $CF$ at $P$. Prove that $P$ lies on $AH_K$.

e) $Q,R$ lie on $BE,CF$, resp such that $PQ\parallel AB,PR\parallel AC$. Prove that $QR\parallel BC$.

f) Prove that $NQ,LR$ and $AH_K$ are concurrent.

g) $D$ is projection of $K$ on $AH_K$. Prove that $DK,EF,BC$ are concurrent.

h) Prove that $KN\perp BE, KL\perp CF$.

i) Prove that nine points $D,E,F;P,Q,R;K,L,N$ lie on a circle $(N_K)$.

j) Prove that $N_K$ is midpoint of $PK$ and $KN_K$ is parallel to $AO$.

k) Prove that $H_K,N_K,O$ are collinear.

When $K \equiv M$ midpoint of $BC$, we get all properities of Nine-point circle.

Solution:

a, g) Let $S \equiv EF \cap BC.$ Then $AS$ is the polar of $H_K$ WRT $(K)$ and $AH_K$ is the polar of $S$ WRT $(K)$ $\Longrightarrow$ $KH_K$ is perpendicular to $AS$ through $H$ and $AH_K$ is perpendicular to $KS$ through $D.$ Hence $SH \cdot SA=SD \cdot SK=SB \cdot SC$ $\Longrightarrow$ $H \in (O).$ Since $\angle AHH_K=90^{\circ},$ then $KH_K$ and $AO$ meet on $(O).$

b, c) $\angle O_KBC=\angle H_KBF=\angle H_KCE=\angle O_KCB$ $\Longrightarrow$ $O_K$ is on perpendicular bisector $OK$ of $\overline{BC}.$ $\angle BFC=\angle BNO_K=\angle BKO_K$ (mod 180) $\Longrightarrow$ $N,B,K,O_K$ are concyclic $\Longrightarrow$ $\angle BNK=\angle BO_KK.$ But $\angle BO_KK=90^{\circ}-\angle FBE=\angle FEK$ $\Longrightarrow$ $\angle BNK=\angle FEK,$ i.e. $N$ lies on circumcircle $(N_K)$ of $DKEF.$ Similarly, $L \in (N_K).$ Thus, $LN$ is antiparallel to $EF$ WRT $AE,AF$ $\Longrightarrow$ $LN \parallel BC.$

d, f)$\triangle PLN$ and $\triangle H_KCB,$ with parallel sides, are homothetic with center $A$ $\Longrightarrow$ $A,P,H_K$ are collinear. Likewise, $\triangle ANL$ and $\triangle PQR,$ with parallel sides, are homothetic with center $AP \cap NQ \cap LR,$ i.e. $AH_K,NQ,LR$ concur.

i) $\angle NKL=\angle NBO_K+\angle LCO_K=CBH_K+\angle BCH_K=\angle NPL$ (mod 180) $\Longrightarrow$ $P \in (N_K).$ Further, $P$ is the midpoint of the arc $EF$ of $(N_K),$ because $\angle PFK=\angle PDK=90^{\circ},$ i.e. $KP$ is perpendicular bisector of  $\overline{EF}.$ Now, since $\angle PQE=\angle FBE=\angle PKE,$ it follows that $Q \in (N_K).$ Similarly, $R \in (N_K).$

h, j) $D,E,F,P,Q,R,K,L,N$ lie then on a circle $(N_K)$ with diameter $KP$ perpendicular to $EF,$ i.e. $KP \parallel AO.$ Thus, $KN$ is perpendicular to $PN \parallel BE$ and $KL$ is perpendicular to $PL \parallel CF.$

e, k) $\triangle PQR \cup (N_K)$ and  $\triangle ABC \cup (O)$ are homothetic with center $H_K \equiv AP \cap BQ \cap CR,$ thus $QR \parallel BC$ and $H_K,O,N_K$ are collinear.

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...