Bài toán: Cho tam giác ABC, đường cao BE, CD. gọi F, G là hình chiếu của D, E trên BC. DG cắt EF tại M. Chứng minh rằng AM vuông BC.
Lời giải:
Gọi P, Q là hình chiếu của A, M trên BC.
$U \equiv MQ \cap DE,$ $V \equiv AP \cap DE$ và $L \equiv DE \cap BC.$
Vì $EG \parallel DF,$ theo bổ đề hình thang $M(D,E,U,L)=-1,$ nhưng $(D,E,V,L)=-1$ vậy ta có đpcm
Blog này tổng hợp các bài toán hay, các bài giảng chọn lọc về nhiều chủ đề: đại số, hình học, giải tích, số học và tổ hợp liên quan đến Toán Olympic và Toán thi ĐH.
Hiển thị các bài đăng có nhãn trùng nhau. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn trùng nhau. Hiển thị tất cả bài đăng
Thứ Tư, 16 tháng 11, 2016
Đăng ký:
Bài đăng (Atom)
Bất đẳng thức tuyển sinh lớp 10 chọn lọc
Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...
-
I) Hàm phần nguyên: 1) Định nghĩa Phần nguyên của một số thực x là số nguyên lớn nhất không vượt quá x. Kí hiệu là [x]. 2) Tính chất...
-
Định nghĩa 1: Một số nguyên a được gọi là thặng dư bình phương mod n nếu tồn tại số nguyên x sao cho $x^2 \equiv a (mod n)$ Ta cũng có th...
-
Trong thế giới bất đẳng thức , ngoài những bất đẳng thức kinh điển và được áp dụng rất nhiều như bất đẳng thức AM – GM, bất đẳng thức Cauc...