Chủ Nhật, 1 tháng 1, 2017

Một tính chất đẹp của đường tròn Mixtilinear

Một tính chất khá thú vị của đường tròn Mixtilinear lúc giải Bài 4

Cho tam giác ABC có I, $I_A$ là tâm đường tròn nội tiếp, bàng tiếp góc A. Một đường tròn đi qua B, C tiếp xúc với đường tròn Mixtilinear trong góc A tại V. Khi đó $I_AV$ là phân giác góc $BVC$.

Điểm V có nhiều cách xác định ví dụ như là đường thẳng qua trung điểm cung BC chứa A và I cắt BC tại V' thì $I_AV'$ cắt đường tròn  Mixtilinear nội của góc A tại V, hoặc xác định như bài 2, 4

Chứng minh:

Gọi $I_B, I_C$ là tâm đường tròn bàng tiếp của tam giác BEC, BFC, E, F là giao điểm của (BSC) và AC, AB, Y, Z là tiếp điểm của đường tròn Mixtilinear với các cạnh AC, AB.
Áp dụng định lý Pascal cho 6 điểm CEVNPB ta có Y, $I_B$, chân đường phân giác ngoài tại V trên BC của tam giác BVC. Theo bổ đề quen thuộc thì điểm đó cũng thuộc YZ như vậy YZ$I_B$ thẳng hàng. Tương tự như vậy ta suy ra được 5 điểm $I_B,I_C, Y, Z, I$ cùng nằm trên đường thẳng.
Mặt khác:  $\angle I_ACB= 90^0-\angle C/2=180^o-\angle I_CZB-\angle I_CBA$
Suy ra $I_BI_CBC$ nội tiếp
Ta có: $\angle YVC= \angle NVC= \angle NBC =\angle CI_CB=\angle C I_CY$ suy ra $I_CVYC$ nội tiếp. Và ta cũng có: $I_CYC=90^o+\frac{\angle A}{2}=180^o-\angle BI_AC$ Suy ra $I_CI_AYC$ nội tiếp suy ra 5 điểm $I_C,I_A, Y, V, C$ đồng viên. Suy ra $\angle CVI_A=\angle CYI_A$
Tương tự ta cũng có: $\angle BVI_A= \angle I_AZB$
Mà hai tam giác $I_AAZ= \triangle I_AAY$ suy ra điều phải chứng minh.

Không có nhận xét nào:

Đăng nhận xét

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...