Hiển thị các bài đăng có nhãn vuông góc. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn vuông góc. Hiển thị tất cả bài đăng

Thứ Ba, 27 tháng 12, 2016

Dùng lượng giác để tính toán các góc trong tam giác

Bài toán (Canada 1998): Tam giác ABC có $\angle CAB=40^o, \angle ABC=60^o$. Lấy $D \in AC, E \in AB$ sao cho $\angle CBD=40^o$ $\angle BCE=70^o$. Gọi F là giao điểm của BD và CE. Chứng minh rằng AF vuông góc BC.

Giải:

Đặt $x=m(\widehat {BAF})$. nên $m(\widehat {CAF})=40^{\circ}-x$, $m(\widehat {BCF})=70^{\circ}$, $m(\widehat {ACF})=10^{\circ}$, $m(\widehat {ABF})=20$, $m(\widehat {CBF})=40^{\circ}$. Áp dụng định lý Ceva-sin cho tam giác ABC có BD,CE,AF đồng quy tại F:
$\sin x\sin 40^{\circ}\sin 10^{\circ}=\sin (40^{\circ}-x)\sin 20^{\circ}\sin 70^{\circ}\Longleftrightarrow$
$2\sin x\sin 10^{\circ}=\sin (40^{\circ}-x)\Longleftrightarrow$
$\cos (x-10^{\circ})-\cos (x+10^{\circ})=\cos (50^{\circ}+x)\Longleftrightarrow$
$\cos (x+10^{\circ})= \cos (x-10^{\circ})-\cos (50^{\circ}+x)\Longleftrightarrow$
$\cos (x+10^{\circ})=2\sin (x+20^{\circ})\sin 30^{\circ}\Longleftrightarrow$
$\cos (x+10^{\circ})=\cos (70^{\circ}-x)\Longleftrightarrow x=30^{\circ}\Longleftrightarrow AF\perp BC\ .$

Bất đẳng thức tuyển sinh lớp 10 chọn lọc

Trong bài viết này, tác giả giới thiệu một số bài BĐT nhẹ nhàng nhưng ý tưởng tương đối mới, mức độ phù hợp với đề thi tuyển sinh vào lớp...